
GraphRARE: Reinforcement Learning Enhanced
Graph Neural Network with Relative Entropy

Tianhao Peng†, Wenjun Wu†∗, Haitao Yuan‡∗, Zhifeng Bao§, Zhao Pengrui†, Xin Yu†,
Xuetao Lin†, Yu Liang¶, Yanjun Pu†

†Beihang University, China ‡Nanyang Technological University, Singapore
§RMIT University, Australia ¶Beijing University of Technology, China

†{pengtianhao,wwj09315,zhaopengrui,nlsdeyuxin,xtlin,buaapyj}@buaa.edu.cn
‡haitao.yuan@ntu.edu.sg,§zhifeng.bao@rmit.edu.au,¶yuliang@bjut.edu.cn

2024 IEEE 40th International Conference on Data Engineering (ICDE)

Abstract—Graph neural networks (GNNs) have shown ad-
vantages in graph-based analysis tasks. However, most existing
methods have the homogeneity assumption and show poor
performance on heterophilic graphs, where the linked nodes have
dissimilar features and different class labels, and the semantically
related nodes might be multi-hop away. To address this limitation,
this paper presents GraphRARE, a general framework built
upon node relative entropy and deep reinforcement learning, to
strengthen the expressive capability of GNNs. An innovative node
relative entropy, which considers node features and structural
similarity, is used to measure mutual information between node
pairs. In addition, to avoid the sub-optimal solutions caused by
mixing useful information and noises of remote nodes, a deep
reinforcement learning-based algorithm is developed to optimize
the graph topology. This algorithm selects informative nodes
and discards noisy nodes based on the defined node relative en-
tropy. Extensive experiments are conducted on seven real-world
datasets. The experimental results demonstrate the superiority of
GraphRARE in node classification and its capability to optimize
the original graph topology.

Index Terms—Graph Neural Networks, Relative Entropy, Deep
Reinforcement Learning, Node Classification

I. INTRODUCTION

Graph data structures have been widely used in many real-
world scenarios such as database management system [14],
[20], [37], knowledge graphs [53], [56], recommendation
systems [23], [43], [55], [58], and traffic forecasting [47]–[49].
In recent years, graph neural networks (GNNs) have exhibited
advantages in numerous graph-based analytic tasks, including
node classification, edge prediction, graph classification, and
graph clustering [57].

Most GNNs are based on a message-passing neural network
(MPNN) framework, which aggregates features of neighbor-
ing nodes. Such a design of node message aggregation is
effective under the assumption of homophily, which requires
that adjacent nodes contain similar features or belong to the
same class labels [57]. Meanwhile, heterophilic graphs have
also been widespread in the real world [10], [12], [21], [22],
[32], [51], [59]. In these graphs, linked nodes have different
features and class labels, whereas semantically related nodes
can be multi-hop away. For instance, different types of amino
acids are more likely to connect together in protein structures,

∗Both Wenjun Wu and Haitao Yuan are the corresponding authors.

GPNN

NL-GCN

UGCN

SimP-GCN

MixHop

H2GCN

MWGNN

Geom-GCN

GOAL

Nodes’ personality

Nod
es’

 fe
atu

re

Structural
information

HOG-GCN

Effectiveness of Node Selection

Fig. 1: The visual illustration of related works on heterophilic
graph neural networks. The color shades indicate the effec-
tiveness of node selection in reconstructing the original graph
topology, with darker shades representing higher effectiveness.

fraudsters are more likely to build connections with customers
instead of other fraudsters in online purchasing networks.
Therefore, local neighbors of the original graph topology fail
to capture informative nodes at a long distance, which may
introduce noises, resulting in poor MPNN performance [13].
Thus, capturing and extracting important features from dis-
tant but informative nodes can enhance the performance of
MPNNs [1], [16], [52], [54], [57], [60].

In recent years, extensive efforts have been made to exploit
remote nodes’ information under the heterophily setting. The
main idea is to optimize the graph topology based on the
homophily assumption that message aggregation mechanism
works the best in homophilic graphs [4], [6], [7], [17], [31],
[44]–[46]. It is widely known that there are two steps to
optimize the original topology and reconstruct graphs. The first
step is to select an appropriate metric to measure the remote
nodes’ importance as accurately as possible. The second step
is to connect the ego node and a small number of remote
nodes based on the importance degree. Existing studies mainly
leverage inherent graph features, such as node features and
structure similarity, to select relative nodes with a constant
number, and then focus on the optimization of the first step.

ar
X

iv
:2

31
2.

09
70

8v
2

 [
cs

.L
G

]
 1

3
A

pr
 2

02
4

Unfortunately, the graph reconstruction in the second step is
often neglected. As Figure 1 shows, the goal of GNN in
heterophilic graphs is to make full use of both the node feature
and structural feature of the graph, and consider the personality
of each node to improve the accuracy of selecting important
nodes. UGCN [16], NL-GNN [25], SimP-GCN [17] and
GPNN [45] mainly utilize feature similarity between nodes
as a metric to reconstruct the neighbor set. GBK-GNN [4]
utilizes kernels to measure the feature similarity between node
pairs to guide the aggregation operation. On the contrary,
other studies consider the topology of graphs. For example,
MixHop [1] and H2GCN [60] utilize the multi-hop node
information in each convolution layer. Geom-GCN [31] maps
the original graph to a latent space and defines the geometric
relationship as a criterion to reconstruct the original graph
topology. MWGNN [27] considers the structural similarity to
select remote nodes. However, the aforementioned methods
rarely consider node features and structural information at
the same time, and hence fail to make full use of the rich
information of graphs. Hence, Polar-GNN [6] and HOG-
GCN [42] consider both node features and structure to guide
the aggregation operation of GNNs. Polar-GNN attempts to
model pairwise similarities and dissimilarities of nodes, but
it fails to capture higher-order structural information or make
full use of it. HOG-GCN uses the label propagation technique
to estimate the homophily degree matrix, which is affected by
the number of labeled nodes, hence making it difficult to fully
utilize the structural information. Regarding the optimization
for the original graph topology, existing studies do not design
appropriate methods for optimization but simply set to hy-
perparameters. Examples like UGCN [16], SimP-GCN [17],
and MI-GCN [38] select the top-k most similar remote nodes
to construct new neighboring node sets or remove the top-d
most dissimilar ones from neighboring sets. These methods
rely on prior knowledge or require a huge amount of human
efforts to tune the hyper-parameters, highlighting the demand
for improved methods in the current approach.

In summary, the aforementioned methods cannot fill the gap
in the field of heterophilic graphs, and the major challenges
can be summarized as follows:

• Appropriate Metric. The key problem in extending higher-
hop neighbors is to determine an appropriate metric for
measuring the node importance when extending higher-hop
neighbors. Most existing studies leverage inherent structural
information directly from the original graphs to measure
node importance. However, how to integrate both node
features and structural information to reconstruct the
original graph topology and enhance the expressive power
of GNNs remains an ongoing challenge.

• Personality of nodes. During the process of reconstructing an
enhanced graph from the original graph, it is often necessary
to set the hyper-parameters, k and d, where we need to select
top-k important nodes from the higher-order neighbors as
the first-order neighbors or delete top-d nodes from the first-
order neighbors for each node. However, the values of k

and d ought to vary across individual nodes, especially
in the case of heterogeneous graphs. Therefore, it becomes
another challenge to consider the individual characteristics
of nodes and set different values of the hyper-parameters.

To address the above challenges, we propose a novel
approach, GraphRARE (Reinforcement leArning enhanced
Graph Neural Network with Relative Entropy), specifically de-
signed for heterophilic graphs. GraphRARE aims to adaptively
optimize the graph topology while leveraging the advantages
of advanced Graph Neural Networks (GNNs), which is critical
in the field of database systems with inherently graph-like
structures [14], [20], [37], [56].

At first, we define a node-aware relative entropy to measure
node importance. In particular, this entropy is composed of
node feature entropy and node structural entropy, which are
designed to capture node features and structural information,
respectively. Therefore, the proposed relative entropy is an
appropriate metric, addressing the first challenge. Next, for
each node, we calculate the node relative entropy between
the ego node and its remote neighbors. Subsequently, we
construct a descending-order node sequence based on the
importance of remote neighbor nodes. To address the second
challenge, we consider the personality of nodes and employ
a Deep Reinforcement Learning (DRL)-based algorithm to
determine the values of hyper-parameters k and d for each
node. At last, we jointly train the DRL-based algorithm and
an existing advanced GNN model, enabling the optimization
of the graph topology and facilitating the downstream task
(i.e., node classification in this paper).

The main technical contributions of this study can be
summarized as follows:

• A node relative entropy is defined to measure the similar-
ity between nodes based on their structure and features,
which enhances the application of node entropy theory in
the domain of graph data (Sec. IV-A).

• The node personality is captured when enhancing the
graph topology, where we use a well-designed reinforce-
ment learning model to set different hyper-parameter
values for different nodes (Sec. IV-B).

• The GraphRARE framework is developed for heterophilic
graphs based on the proposed node relative entropy and
deep reinforcement learning (Sec. III). The combination
of DRL and GNNs provides end-to-end training to opti-
mize the original graph topology (Sec. IV-C).

• Extensive experiments have been conducted and the re-
sults show that the proposed method represents a general
yet useful framework, which can enhance the GNN
performance in node classification (Sec. V).

II. PRELIMINARY

In this section, we first introduce some basic concepts and
then formulate the problem of heterophilic graph topology
optimization. In addition, frequently used symbols are sum-
marized in Table I.

GNN

 Gt Gt+1

Acc Loss

Reward

DRL

AAA

Original graph G0

Relative Entropy
Calculation Graph Topology

Optimization module

GNN & DRL Co-training

Fig. 2: An illustration of the proposed GraphRARE framework. The GNN and DRL module are trained jointly to optimize the
graph topology based on the relative entropy (the depth of the node’s color indicates the value of entropy).

TABLE I: Symbols and Definitions.

Symbol Definition

G=(V,E,X,A) Graphs
N Number of nodes in the graph
V ={v1, v2, ..., vN} Set of nodes
E ⊆ V × V Set of edges
X ∈ RN×d Node feature matrix
A ∈ RN×N Adjacency matrix
H Homophily ratio of a graph
H(v, u) Node relative entropy between node v and u
Hf (v, u) Feature Entropy between node v and u
Hs(v, u) Structural entropy between node v and u
λ The hyper-parameter in node relative entropy
St Multi-discrete state at step t
At Multi-discrete action at step t
R(St) Reward of state St

yv Class of node v
Nk(v) The k-hop neighbors of node v
N1(v) The first-order neighbors of node v

A. Basic Concepts

Graph. A graph can be formulated as G=(V,E,X,A), where
V ={v1, v2, ..., vN} denotes a node set, E ⊆ V ×V is an edge
set, X ∈ RN×d represents node features, and A ∈ RN×N is
the adjacency matrix; N is the number of nodes, and d is the
dimension of a node feature. Particularly, aij=1 indicates that
an edge between nodes vi and vj exists; otherwise, aij=0.
Further, xi represents the feature vector of a node vi. The
degree of a node v is denoted by dv . The k-hop neighbors
of a node v are denoted by Nk(v). For instance, a directly
connected (one-hop) neighbor set of a node v is N1(v).
Heterophilic Graph and Homophily Ratio. Different nodes
in a graph may correspond to different categories/classes, so
we call it a heterophilic graph, where the linked nodes belong
to different categories/classes or possess dissimilar features. In
addition, the definition of heterophilic graphs can be measured
by the homophily ratio, which is computed based on its edge
homophily [60]:

H =
|{(v, u) ∈ E : yv = yu}|

|E|
(1)

Here, H is the homophily ratio, yv is the label of node v. The
value range of H is [0, 1]. A large H indicates a homophilic
graph, whereas a low H indicates a heterophilic graph.

Topology Optimization for Heterophilic Graph Learning.
The majority of Graph Neural Networks (GNNs) follow the
homophily assumption, which aggregates messages extracted
from local neighbor nodes, but this approach may not ef-
fectively generalize to heterophilic graphs. Improving the
performance of traditional GNNs (e.g., GCN, GAT, Graph-
SAGE) in such graphs is a challenging task. One general and
effective method is to optimize the original graph topology
(i.e., adding edges to link nodes or deleting existing links)
using a well-designed metric to increase the homophily ratio.
Numerous approaches, such as UGCN [16], NL-GNN [25],
SimP-GCN [17], and GPNN [45], have been proposed for
this purpose. By optimizing the heterophilic graph topology,
the linked nodes in the graphs tend to have more similar
features, making them more suitable for traditional GNNs.
This enhancement allows the vanilla GNNs to perform better
on heterophilic graphs and improve their overall performance
and generalization capability.

B. Problem Formulation

The main goal of graph topology optimization for graph
learning is to restructure the graph in a way that promotes
information exchange and interactions between nodes of dif-
ferent types. To achieve this, a well-designed metric is used
to measure the relevance between node pairs. Noisy edges are
deleted, and informative node pairs are connected to enhance
the flow of information in the graph. Formally, we can define
it as follows.

Definition 1 (Topology Optimization for GNNs): Given a
heterophilic graph G = ⟨V,E,X,A⟩, a graph neural network
model (GNN) designed for a downstream task (i.e., node
classification in this paper), the objective is to devise an
effective transformation approach for creating a refined graph
G′ = ⟨V,E′, X,A′⟩. This approach involves the addition or
deletion of edges to optimize the performance of the GNN
model on the given downstream task.

III. FRAMEWORK

As shown in Figure 2, we first introduce a highly effective
relative entropy function designed to quantify the significance
of one node with respect to another. In particular, to capture
both nodes’ feature and graph structural information, our
proposed node relative entropy is comprised of both node

feature entropy and node structural entropy. For example,
given a node ‘A’ in the original graph, we leverage the
entropy value to measure other nodes’ relative significance.
Hence, we can add/delete edges linking ‘A’ and some nodes
with high/low entropy values. However, each node exhibits
its distinct characteristics or ”personality,” and optimizing the
graph topology with a uniform addition or deletion of links
may not fully consider these individual traits. Consequently,
this approach can lead to sub-optimal results in the optimized
graph.

To address this, we propose a novel approach that models
the graph topology optimization as a finite horizon Markov
Decision Process with multi-discrete states. This allows us
to effectively account for the personality of different nodes
within the graph. The entire model comprises two neural
network modules: the Graph Neural Network (GNN), which
handles the downstream task of node classification, and the
Deep Reinforcement Learning (DRL) module, responsible for
determining the number of added or deleted edges for each
node. Moreover, we adopt a co-training approach in a loop
mode, where the GNN’s training loss or accuracy serves
as the reward to train the DRL module. Concurrently, the
DRL module generates a reconstructed graph, which then
becomes the input to the GNN. The entire pipeline operates
as follows: prior to model training, we compute the relative
entropy between node pairs. During each training step, the
GNN’s performance is evaluated on the optimized graph at
step t (Gt). Based on this performance, including accuracy
and loss on the training set, the policy network of the DRL
is updated. Subsequently, the graph topology optimization
module generates the optimized graph Gt+1 and feeds it into
the GNN for the next iteration of co-training.

In summary, by incorporating reinforcement learning into
the graph topology optimization process, we aim to better
capture and utilize the diverse traits and relationships between
nodes, leading to improved performance in various tasks. This
framework allows us to tailor the graph topology to suit the
specific characteristics of the nodes, enhancing the overall
effectiveness of our proposed model.

IV. METHODOLOGY

This section presents our GraphRARE framework for node
classification in heterophilic graphs, addressing the main chal-
lenges related to metric and personality of nodes, as described
in Section I. The framework, depicted in Figure 2, follows
a multi-step approach. Initially, GraphRARE computes the
relative entropy between nodes, and subsequently trains the
GNN and DRL modules jointly in an end-to-end manner
to accomplish the node classification task. In particular, we
first define the fundamental concepts of node relative entropy,
encompassing both node feature entropy and node structural
entropy. Subsequently, we elucidate the construction of a node
sequence based on the relative entropy theory. In addition,
we develop a graph reconstruction mechanism to optimize the
original graph topology based on deep reinforcement learning.

Finally, we take advantage of the GNNs in node feature
learning to complete the node classification task.

A. Node Relative Entropy Calculation

Entropy is an effective method to measure uncertain in-
formation in a graph. Relative entropy (Kullback–Leibler
divergence) [19] is one measure to quantify differences in
probability distributions, which is defined as follows:

DKL(P∥Q) =

n∑
i=1

P (i) log
P (i)

Q(i)
(2)

where Pi and Qi are two probability distributions of the event
i; n is the number of events; P and Q have the same number
of components. Notably, the smaller the entropy is, the smaller
the difference between two distributions will be.

However, it is non-trivial to measure the graphs using the
original definition of relative entropy where the rich node
features and link structures are difficult to quantify. Inspired
by [26], [50], our work optimizes the original graph entropy
and introduces a node relative entropy that consists of feature
entropy and structural entropy to address this issue. To mea-
sure the feature similarity between nodes, the graph feature
entropy in [26] is optimized in this study by calculating the
entropy between any pair of nodes, and the computational
complexity is also reduced. Since the feature entropy does
not take structural information into account, we introduce
structural entropy to measure the structural similarity between
nodes. However, the structural entropy in [50] has difficulty
in accurately measuring the semantically related node pairs,
and we optimize it by introducing Jensen–Shannon (JS) di-
vergence [24].

1) Node Feature Entropy: Feature entropy measures the
difference between two nodes based on their feature vectors.
Inspired by the MinGE model [26], which defines the graph
feature entropy, this paper designs a feature entropy for each
pair of nodes in graph data. Compared to the graph feature
entropy in [26], the node feature entropy requires lower
computation complexity and is able to compute entropy at
the node level. Based on the assumption of node embedding,
considering that nodes in the same class are more similar, the
node embedding dot product of node pairs is used as a node
feature entropy, which can be expressed as follows:

zv = ϕ(xv) ∈ Rh,∀v ∈ V (3)
Hf (v, u) = −P (zv, zu) logP (zv, zu)

= − e⟨zv,zu⟩∑
i,j e

⟨zi,zj⟩
log

e⟨zv,zu⟩∑
i,j e

⟨zi,zj⟩
(4)

where ϕ(·) is an embedding function (e.g., multilayer percep-
tron), which converts original features to vectors; xv is a node
feature of a node v; h is the dimension of the node feature
embedding zv; ⟨·, ·⟩ is the dot product operation;

∑
i,j e

⟨zi,zj⟩

represents the dot product sum of a pair of nodes in a graph
G; Hf (v, u) is the node feature entropy between nodes v and

u. As shown in Eq. (4), the larger the node feature entropy is,
the more similar the node features are.

2) Node Structural Entropy: Structural entropy measures
the difference between two nodes based on their local struc-
ture [50]. Node degree has been one of the most important
structural features in the graph structure entropy [29]. There-
fore, it is reasonable to calculate the node structural entropy
by comparing the ordered degree sequences of nodes and their
first-order neighbors. However, the local relative entropy [50]
is directly measured by KL divergence whose value ranges
in [0,+∞], and thus the entropy has no practical meaning
when the value is too large. Therefore, we optimize it by
introducing Jensen–Shannon (JS) divergence [24] with values
in the range [0, 1] to measure semantically related remote
nodes more accurately and more reasonable.

According to the definition of JS divergence, we first
compute the KL divergence DKL(v∥ v+u

2) from a node u to
the node v in a graph G, which is calculated as follows:

d(v) = [dv1, dv2, ..., dvM] ∈ RM (5)

p(v) = [pv1, pv2, ..., pvM] ∈ RM

= [
dv1∑M
i=1 dvi

,
dv2∑M
i=1 dvi

, ...,
dvm∑M
i=1 dvi

] (6)

DKL(v∥
v + u

2
) =

M∑
i=1

pvi log
pvi

pvi+pui

2

(7)

where d(v) is a descending-order sequence containing de-
gree values dvi of node v and its one-hop neighbors;
M=max {degree(v)|v ∈ G} is the max degree of a node in
a graph G; dvi=0 if i > (degree(v)+1);

∑M
i=1 dvi is the sum

of the sorted sequences d(v); p(v) is the normalized result of
d(v).

Then, the structural entropy between nodes v and u can
be calculated based on DKL(v∥ v+u

2) and DKL(u∥ v+u
2) as

follows:

Hs(v, u) = 1− 1

2

(
DKL(v∥

v + u

2
) +DKL(u∥

v + u

2
)

)
(8)

where DKL(v∥ v+u
2) represents the relative entropy from a

node u to the node v, and DKL(u∥ v+u
2) is the opposite;

Hs(v, u) is symmetric and denotes the structural entropy. As
defined in Eq. (8), the larger value of the node structural
entropy suggests the higher similarity between the nodes’
structures.

3) Node Relative Entropy.: Node relative entropy consists
of feature entropy and structural entropy. Formally,

H(v, u) = Hf (v, u) + λHs(v, u) (9)

where H(v, u) represents node relative entropy between nodes
v and u; Hf (v, u) is symmetric and denotes the feature
entropy; Hs(v, u) is symmetric and denotes the structural
entropy; λ is a hyper-parameter that controls the ratio.

Agent

Environment

State

Reward

Action

GNN Graph Topology
Optimization Module

Fig. 3: The agent environment interaction in RL.

4) Node Entropy Sequence Construction: The original
graph topology might not be appropriate for heterophilic
GNNs with a message passing framework, where nodes of
the same class have a high degree of structural similarity
but may be far away from each other [57]. Considering the
node relative entropy, which reflects the relevant relationship
between nodes, a sorted sequence is constructed for each node
according to the entropy value. Namely, top-k new neighbors
are selected for each node, and the original graph topology is
optimized by connecting the selected new neighbors with the
ego node. In this way, potential neighbors that are most similar
to the ego node can be discovered and selected. Theoretically,
since the node entropy sequence can be constructed flexibly to
cover the whole graph, this strategy should be able to capture
long-range dependencies even if the two nodes are distant.
In this study, we select the top-k nodes from the ego node’s
remote neighbors and delete the top-d nodes from the one-
hop neighbors based on the relative entropy. The values of k
and d can be different on each individual node and they are
updated by a deep reinforcement learning-based mechanism
during model training.
Time Complexity Analysis. In the worst case, the time
complexity of node relative entropy calculation is O(N2)
for any size of the graph due to the matrix multiplication.
By using PyTorch [30] functions and matrix operations, we
can significantly reduce the complexity of the calculation.
For instance, the entropy is symmetric, and calculating the
entropy between nodes v and u only needs to be performed
once. Additionally, we only need to calculate the entropy
once before training the GNN and DRL instead of in each
epoch. In practice, graphs are usually sparse, and hence the
empirical complexity is much smaller than O(N2) by using
sparse matrix computation techniques.

B. Deep Reinforcement Learning Module

To mitigate the “personality of nodes” challenge in the top-k
and top-d selection, this study proposes a deep reinforcement
learning-based mechanism to update the k and d value of
a node v in a graph G regardless of the size and topology
structure of a graph. If k (or d) is set as a hyper-parameter,
meaning that all nodes will select the same number of top-k
new neighbors (or top-d one-hop neighbors deleted), this can
either introduce noisy nodes or discard informative nodes.
Thus, instead of defining it as a single hyper-parameter, a
DRL-based algorithm is used to find the optimal top-k and

top-d values for every graph node. The updating process
of top-k and top-d is modeled as a finite horizon Markov
Decision Process (MDP), which is characterized by a tuple
(S,A, P,R, γ), where St ∈ S , At ∈ A are state and action
observed at step t, P is a state transition function, R is a
reward function, and γ is a discount factor. The MDP tuple is
defined as follows:

• State: The state S is set as
S=[k1, k2, ..., kN , d1, d2, ..., dN], where ki represents the
number of newly connected neighbors of a node vi, and
di is the number of deleted neighbors. The state at step
t is St; when t=0, S0=[0, 0, ..., 0].

• Action: The DRL agent updates kt by taking an action
At based on St. Since state St is a multi-discrete state,
action A=[ak1 , a

k
2 , ..., a

k
N , ad1, a

d
2, ..., a

d
N] is defined as a

multi-discrete action, and aki (adi) is defined as the number
of newly connected neighbors ki (deleted neighbors di)
added or subtracted by a fixed value ∆k=1 or kept
unchanged.

• State Transition: The state transition function is defined
by:

St+1 = P (At|St) = St +At (10)

After updating the state S, the original graph topology
is reconstructed by adding edges between node v and its
entropy sequence’s top-kv nodes.

• Reward: The goal of DRL is to find an optimal graph
topology for the original graph and GNN model. A
discrete reward function is defined based on the GNN
performance as follows:

R(St) = (acct − acct−1) + λr(losst−1 − losst) (11)

where acct and losst are node classification accuracy and
loss of the GNN on the training set at step t, respectively;
λr is a hyper-parameter that controls the ratio. The reward
function indicates that if the performance of GNN on
graph Gt is better than that on graph Gt−1, then the
topology of Gt is better than Gt−1. It is worth noting
that the current reward function can be replaced with
alternative ones as long as they are able to guide the
DRL towards optimizing the original topology.

• Graph Topology Optimization Module: At every step t,
the proposed method optimizes the graph topology from
Gt to Gt+1. The DRL policy network first generates an
action At based on the state St at step t, and the envi-
ronment updates the state to St+1 according to Eq. (10).
Then, the topology optimization module connects node
v and the top-kv nodes in the node entropy sequence
seqv for each node v ∈ V to construct graph Gt+1 (see
Figure 4). Finally, the GNN model is trained on the new
graph Gt+1 and provides its accuracy and loss value on
the training dataset to the DRL module as the reward
according to Eq. (11).

Node Entropy Sequence
A

... ...

State in DRL module

A

Gt+1

A

Gt

Fig. 4: An illustration of the graph topology optimization
module. For any node v in the graph Gt at step t, the graph
optimization module generates graph Gt+1 via adding kv
edges and removing dv edges for node A based on the state
St. For node A in this example, kA = 3 edges are added and
dA = 2 edges are removed.

Algorithm 1: The overall process of GraphRARE
Require: G = (V,E,X,A)
Ensure: Node label yv

// Calculate node relative entropy
1: for v, u ∈ V do
2: Calculate feature entropy Hf (v, u) via Eq. (4)
3: Calculate structural entropy Hs(v, u) via Eq. (8)
4: Calculate relative entropy H(v, u) via Eq. (9)
5: end for
6: Construct node entropy sequence based on H(v, u)
7: Initialize max acc = 0

// Train GNN and DRL jointly in an end-to-end manner
8: for iteration=1,2,... do

// Evaluate on training set, no backward
9: acct, losst = GNN(Gt, X)

10: if acct > max acc then
// Additional training on the current graph Gt as it
leads to a higher accuracy

11: max acc← acct
12: Train GNN(Gt, X) for a few more epochs
13: end if

// DRL process
14: reward(St)← Eq. (11)
15: At ← DRL policy network
16: St+1 = P (At|St) via Eq. (10)
17: Reconstruct graph Gt+1 based on Gt, St+1, and node

entropy sequence
18: end for

During the training process at step t, the DRL agent and
GNN model are trained jointly in an end-to-end manner to
optimize the original graph topology dynamically. Figure 3
illustrates the agent-environment interaction in reinforcement
learning. Firstly, the GNN model is evaluated on the training
set based on the graph topology Gt, and calculate the accuracy
acct and losst. Notably, during this evaluation phase, no
updates are made to the parameters of GNN. If acct surpasses
the previous best, we train the GNN model for a few epochs
on the graph topology Gt to complete the node classification
task. To prevent overfitting on Gt, an early stopping strategy is
implemented. Secondly, the DRL agent calculates the reward

according to Eq. 11 and updates the policy network. Thirdly,
the DRL agent takes action At and updates the state to St+1

according to Eq. 10. Lastly, the graph topology optimization
module reconstructs the graph topology by connecting the
selected remote nodes based on the state St+1. The complete
process is shown in Lines 7−18 in Algorithm 1.

Lastly, the graph topology optimization module reconstructs
the graph topology by connecting the selected remote nodes
based on the state St+1.

As the DRL algorithm, we use the Proximal Policy Op-
timization algorithm (PPO) [35], which is a classical policy
gradient optimization algorithm that can deal with large-scale
multi-discrete states and action spaces. It should be noted that
in addition to the PPO algorithm, other reinforcement learning
algorithms can also be conveniently applied to the proposed
framework.

C. Node Feature Learning

The GraphRARE framework can be easily adapted to any
existing GNN model to improve the model’s performance. In
the proposed framework, the original graph topology is recon-
structed by training the DRL and GNN jointly based on the
node relative entropy. In order to retain the GNN advantages,
we adopt the same mechanism of node feature learning in
the existing GNNs for multi-layer local aggregation. A GNN
model consists of L local aggregation layers, allowing each
node to access the L-hop neighbors’ information. For a node
v ∈ V , the calculation formula of the lth layer in a L-layer
GNN (l=1, 2, ..., L) is given by:

m(l)
v = AGGREGATE(l)

({
h(l−1)
u : u ∈ N1(v)

})
(12)

h(l)
v = UPDATE(l)

(
h(l−1)
v ,m(l)

v

)
(13)

where h
(l)
v is the feature of a node v in the lth layer, and

h
(0)
v =xv; AGGREGATE(l)(·) and UPDATE(l)(·) represent the

feature aggregation function (e.g., mean, LSTM, and max
pooling) and feature update function (e.g., linear-layer com-
bination and MLP) [57], respectively; N1(v) represents the
one-hop neighboring node set of a node v.

D. Model Training

In Algorithm 1, we present a step-by-step depiction of the
training process. Beginning with a heterophilic graph G =
(V,E,X,A), we compute the relative entropy between pairs of
nodes, considering both their node features and local structures
(lines 1-5). Subsequently, we construct entropy sequences for
each node in descending order, based on their relative entropy
values (line 6). Lastly, we perform joint training of GNN and
DRL module in an end-to-end manner. During iteration t, the
GNN evaluates the graph Gt and produces accuracy and loss
metrics, which are then utilized to calculate the reward. The
DRL policy network is updated based on the reward, and we
optimize the graph to Gt+1 for the subsequent iteration.

TABLE II: Statistics and properties of the seven datasets.

Datasets #Nodes #Edges #Features #Classes H

Chameleon 2,277 36,101 2,325 5 0.23
Squirrel 5,201 217,073 2,089 5 0.22
Cornell 183 295 1,703 5 0.30
Texas 183 309 1,703 5 0.11
Wisconsin 251 499 1,703 5 0.21
Cora 2,708 5,429 1,433 7 0.81
Pubmed 19,717 44,338 500 3 0.80

V. EXPERIMENTS

In this section, we evaluate the performance of the
GraphRARE framework on the node classification task on
seven real-world datasets. We first introduce the datasets,
the baseline models, and hyper-parameter settings. Then, we
compare GraphRARE with baseline models and analyze the
results. Finally, the contribution of different components to the
performance of GraphRARE is evaluated via hyper-parameter
analysis, ablation study on the DRL module, convergence
analysis for model training, and graph topology optimization
analysis.

A. Datasets

The proposed GraphRARE is evaluated on seven widely
used real-world graph datasets, including five heterophilic
graph datasets and two homophilic graph datasets. The het-
erophilic graph datasets are Chameleon, Squirrel [34], Cornell,
Texas, and Wisconsin [9]. The homophilic graph datasets are
Cora [36] and Pubmed [28]. The statistics for all the datasets
are summarized in Table II.

B. Compared Methods and Setup

In the experiments, four enhanced GNNs based on the pro-
posed framework are constructed: GCN-RARE, GraphSAGE-
RARE, GAT-RARE, and H2GCN-RARE. To be specific,
GCN-RARE denotes reinforcement learning enhanced GCN
model with relative entropy, and so do the other three models.
The models are end-to-end trained using the node classification
loss. The proposed four enhanced GNNs are compared with
thirteen baseline models, including an attributed-only based
MLP, three traditional GNN models (GCN, GraphSAGE, and
GAT), and nine GNN-based state-of-the-art (SOTA) meth-
ods for heterophilic graphs (MixHop, H2GCN, Geom-GCN,
UGCN, SimP-GCN, OTGNet, GBK-GNN, Polar-GNN, and
HOG-GCN) for node classification tasks. Specifically, the
OTGNet model originally handles the heterophily for tem-
poral graph. Since the underlying mechanisms of OTGNet
for managing diverse classes and propagating information are
applicable across temporal and static graph structures, we
adopt the static graphs as input for a fair comparison.

C. Hyper-parameter setting

Based on the hyper-parameter settings of the original mod-
els [11], [18], [40], [60], the final hyper-parameter setting is
configured as follows: the dropout rate is set to p=0.5, the
initial learning rate is 0.05, and the weight decay is set to

TABLE III: Mean accuracy and standard deviation over ten different data splits on the seven real-world graph datasets. The best
results are highlighted in bold. The improvements of the GraphRARE models compared to their counterparts are calculated,
with an improvement denoted by an up arrow ↑, and a negative improvement by a down arrow ↓.

Method Chameleon Squirrel Cornell Texas Wisconsin Cora Pubmed Average

MLP 46.51±2.53 29.29±1.40 80.81±6.91 81.08±5.41 84.12±2.69 74.61±1.97 86.63±0.38 69.01

GCN [18] 59.08±2.47 46.64±1.42 55.73±6.33 52.84±5.43 56.04±5.76 85.16±1.01 87.18±0.42 63.24
GraphSAGE [11] 58.83±2.15 41.44±1.85 72.70±9.16 75.68±6.16 76.08±4.28 84.53±1.38 85.09±0.52 70.62
GAT [40] 54.34±2.46 40.79±3.78 54.22±5.38 56.49±6.89 54.45±5.62 86.02±1.37 86.55±0.47 61.84

MixHop [1] 60.50±2.53 43.80±1.48 73.51±6.34 77.84±7.73 75.88±4.90 83.10±2.03 80.75±2.29 70.77
H2GCN [60] 56.85±1.68 32.20±2.19 78.16±4.05 79.70±5.16 82.08±3.22 86.26±1.08 88.76±0.41 72.00
Geom-GCN [31] 60.90 38.14 60.81 67.57 64.12 85.27 90.05 66.69
UGCN [16] 54.07 34.39 69.77 71.72 69.89 84.00 85.22 67.01
SimP-GCN [17] 62.61 42.57 84.05 81.62 85.49 82.80 81.10 74.33
OTGNet [7] 46.34±5.77 35.39±2.96 58.19±9.61 65.81±10.38 61.23±8.69 73.31±4.48 76.64±2.18 59.56
GBK-GNN [4] 48.46±0.81 36.69±0.33 69.59±2.24 75.59±2.94 78.98±4.19 82.65±0.64 83.48±0.19 67.92
Polar-GNN [6] 64.0±0.6 49.3±0.8 - - - 83.1±0.9 80.2±0.4 -
HOG-GCN [42] 54.01±1.28 35.46±1.96 84.32±4.32 85.17±4.40 86.67±3.36 87.04±1.10 88.79±0.40 74.49

GCN-RARE(ours) 68.05±1.87 55.90±1.39 64.59±4.95 58.38±6.64 61.76±5.49 87.24±1.26 88.41±0.50 69.19
↑8.97 ↑9.26 ↑8.86 ↑5.54 ↑5.72 ↑2.08 ↑1.23 ↑5.95

GraphSAGE-RARE(ours) 69.28±1.90 52.84±1.33 82.97±5.10 82.16±6.07 85.69±5.29 87.08±1.17 89.03±0.56 78.43
↑10.45 ↑11.40 ↑10.27 ↑6.48 ↑9.61 ↑2.55 ↑3.94 ↑7.81

GAT-RARE(ours) 64.56±2.48 49.99±2.79 61.60±3.01 58.11±5.44 61.08±3.80 86.60±1.19 87.41±0.65 67.05
↑10.22 ↑9.20 ↑7.38 ↑1.62 ↑6.63 ↑0.58 ↑0.86 ↑5.21

H2GCN-RARE(ours) 58.09±1.91 34.93±1.49 87.84±4.05 86.76±5.80 90.00±2.97 86.82±1.51 90.07±0.26 76.36
↑1.24 ↑2.73 ↑9.68 ↑7.06 ↑7.92 ↑0.56 ↑1.31 ↑4.36

{5E−5, 5E−6}. For GCN, GAT, GraphSAGE, and H2GCN,
the number of hidden units is selected from the set {48,
64, 128}, the number of GNN layers is set to two, and the
Adam optimizer is adopted. For the sake of fair comparison, in
GCN-RARE, GraphSAGE-RARE, GAT-RARE, and H2GCN-
RARE, the hyper-parameters are configured to be the same
as those in their counterparts (GCN, GraphSAGE, GAT, and
H2GCN). We set the λ in Eq.(9) to λ=1.0 and discuss it
in Section V-E. For the PPO algorithm, we choose a MLP
network for the policy model.

For all the benchmarks, we adopt the same class labels,
feature vectors, and perform 10 random splits on the datasets
(60%/20%/20% of nodes per class for training/validation/test-
ing) provided by Pei et al. [31], which is available on their
GitHub 1. We launch the testing procedure when the validation
accuracy of the trained model achieves a maximum value for
each run, and calculate the average test accuracy over these
ten runs.

The GCN, GraphSAGE, GAT, H2GCN and our meth-
ods are constructed using Pytorch [30], Deep Graph Li-
brary [41], Pytorch Geometric [8], OpenAI Gym [2], and
Stable-Baselines3 [33] with one NVIDIA A100-40GB GPU.

D. Node Classification

The experimental results for the node classification task
on the seven datasets are illustrated in Table III. The mean
accuracy and standard deviation for ten different data splits
are presented, and the best results are highlighted in bold.

1https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/splits

With the node relative entropy guided higher-order neighbor
ranking and the deep reinforcement learning-based graph
topology optimization, GraphRARE obtains a better graph
topology under the heterophily setting. We apply different
enhanced GraphRARE models and make comparisons with
corresponding baselines and the GNN-based SOTA models. As
displayed in Table III, three patterns can be observed: (1) The
enhanced models, GCN-RARE, GraphSAGE-RARE, GAT-
RARE, and H2GCN-RARE, demonstrate improvements over
their counterparts (GCN, GraphSAGE, GAT, and H2GCN) on
all the heterophilic datasets, which indicates that the advan-
tages of the proposed GraphRARE framework are general
for common GNNs. Specifically, the proposed framework
improves the performance of GCN by 5.95% on average,
GraphSAGE by 7.81% on average, GAT by 5.14% on average,
and H2GCN by 4.23% on average. (2) On the dataset with
strong homophily (Cora and Pubmed), GraphRARE performs
better or is comparable to the baselines. To be specific,
GraphRARE performs best on Cora, and achieves the second
best on Pubmed. The experimental results show that the
GraphRARE framework also performs well on homophilic
graphs. (3) On the dataset with middle and low homophily,
e.g., Chameleon, Squirrel, the four GraphRARE-based models
achieve the best results on the five heterophilic datasets, and
the overall performance is 6.69% higher than the best SOTA
method (SimP-GCN) on average. This is mainly attributed
to the fact that GraphRARE adaptively optimizes the graph
topology based on the DRL module and the node relative
entropy, it effectively ignores the irrelevant nodes and selects
the most important remote nodes by considering the node

TABLE IV: Hyper-parameter analysis results. The hyper-parameter λ controls the weight of structural entropy in the node
relative entropy as defined in Eq.(9). The best results are highlighted in bold.

Method λ Chameleon Squirrel Cornell Texas Wisconsin Cora Pubmed Average

GCN-RARE

0.1 67.36±2.25 54.89±1.54 63.92±7.24 57.83±7.81 59.31±5.07 87.34±1.07 87.49±0.72 68.31
0.5 67.56±2.01 54.77±1.46 63.77±5.69 57.78±6.36 58.93±4.81 86.21±1.33 87.62±0.74 68.10
1.0 68.05±1.87 55.90±1.39 64.59±4.95 58.38±6.64 61.76±5.49 87.24±1.26 88.41±0.50 69.19

10.0 67.73±1.98 55.45±1.25 63.54±6.23 57.79±7.46 58.82±4.60 86.27±1.48 87.77±0.97 68.20

GraphSAGE-RARE

0.1 68.70±2.66 52.93±1.74 80.03±5.70 80.54±5.90 84.16±4.68 86.74±1.37 88.40±0.74 77.36
0.5 68.95±2.37 52.58±1.61 81.00±8.48 81.46±5.57 84.94±3.73 87.06±0.82 89.12±0.38 77.87
1.0 69.28±1.90 52.84±1.33 82.97±5.10 82.16±6.07 85.69±5.29 87.08±1.17 89.03±0.56 78.43

10.0 68.78±2.01 52.67±1.41 81.54±7.23 81.49±5.14 84.96±4.62 86.76±1.33 88.77±0.93 77.85

GAT-RARE

0.1 63.77±2.32 49.54±2.55 60.00±7.03 56.89±6.14 60.12±6.15 86.22±1.26 86.99±0.83 66.22
0.5 63.18±2.39 48.88±2.30 60.84±4.86 57.08±5.47 60.71±4.59 86.54±1.29 87.38±0.43 66.37
1.0 64.56±2.48 49.99±2.79 61.60±3.01 58.11±5.44 61.08±3.80 86.60±1.19 87.41±0.65 67.05

10.0 64.30±3.04 49.96±2.25 59.73±4.75 56.24±6.40 60.90±6.74 86.12±1.43 87.16±0.57 66.34

H2GCN-RARE

0.1 58.03±1.64 33.77±2.19 86.86±5.37 86.31±3.60 88.43±4.15 86.40±1.24 89.48±1.24 75.61
0.5 57.70±1.66 33.65±2.03 87.42±5.92 86.12±3.51 87.65±3.17 86.08±1.76 89.67±0.59 75.47
1.0 58.09±1.91 34.93±1.49 87.84±4.05 86.76±5.80 90.00±2.97 86.82±1.51 90.07±0.26 76.36

10.0 57.35±1.74 32.90±1.83 86.24±5.51 85.86±3.67 87.65±3.17 86.82±1.42 89.35±0.92 75.17

TABLE V: Ablation study on relative entropy and DRL module. “GCN-RE[·]” represents GraphRARE without DRL, instead
randomly assigning k and d to each node. “GCN-RA” denotes GraphRARE without the relative entropy component. “GCN-
RARE-add” and “GCN-RARE-remove” describe GraphRARE when it only adds edges and only removes edges, respectively.

Method Chameleon Squirrel Cornell Texas Wisconsin Cora Pubmed Average

GCN [18] 59.08±2.47 46.64±1.42 55.73±6.33 52.84±5.43 56.04±5.76 85.16±1.01 87.18±0.42 63.24

GCN-RE[0..5](ours) 63.48±2.09 48.03±1.05 59.72±3.72 55.43±9.48 56.17±4.38 84.32±1.60 85.13±0.46 64.61
GCN-RE[0..10](ours) 60.89±2.31 46.04±0.73 61.35±3.64 56.21±5.75 59.49±5.33 83.44±1.59 84.52±0.39 64.56
GCN-RE[0..15](ours) 58.69±2.16 45.19±1.37 61.08±5.01 53.74±6.13 61.25±5.04 83.11±1.63 84.15±0.40 63.89
GCN-RE[0..20](ours) 58.55±1.40 45.09±1.42 61.05±7.57 58.61±7.92 59.62±7.37 83.27±1.36 83.97±0.49 64.31

GCN-RA(ours) 61.48±1.39 47.50±1.71 59.57±6.56 54.57±7.94 59.65±7.83 84.98±1.37 87.42±0.59 63.78

GCN-RARE-add(ours) 66.43±1.36 55.46±1.14 58.11±6.19 58.12±7.74 59.22±4.45 86.58±1.34 88.02±0.52 67.25
GCN-RARE-remove(ours) 67.52±1.68 55.43±1.42 60.95±4.55 55.14±7.66 61.37±7.07 86.88±1.23 87.95±0.62 67.89

GCN-RARE-reward(ours) 66.54±2.12 53.05±1.33 60.64±4.99 54.02±7.26 58.74±6.25 86.72±1.37 87.74±0.57 66.78

GCN-RARE(ours) 68.05±1.87 55.90±1.39 64.59±4.95 58.38±6.64 61.76±5.49 87.24±1.26 88.41±0.50 69.19

feature and structural information.

E. Hyper-parameter Analysis

With the calculation of the node relative entropy, the
GraphRARE framework optimizes the graph topology adap-
tively. As defined in Eq.(9), the hyper-parameter λ controls
the weight of structural entropy in the node relative entropy. In
order to determine the weight of the structure entropy, we con-
duct extensive experiments to analyze λ on the benchmarks.
The experimental results are depicted in Table IV. As shown in
the table, it is not hard to see that the structural entropy is often
equally important as the feature entropy for the GraphRARE
framework. Therefore, given an arbitrary graph, we can simply
set λ to the default value of 1.0. As the relative entropy with
λ=0.1 or λ=10.0 can be considered as feature entropy alone or
structural entropy alone respectively, we also observe that the
performance is better when considering both feature entropy
and structure entropy than when considering either of them
separately. The experimental results verify our assumption
that both the node features and the local topological structure

contribute to measuring the mutual information between node
pairs.

F. Ablation Study

The proposed GraphRARE framework jointly trains the
DRL-based module and GNN to optimize the graph topology.
An ablation study on the GraphRARE framework is conducted
to evaluate the DRL module and the relative entropy’s con-
tribution by (1) setting the same number of new neighbors k
and deleted neighbors d for each node to a fixed value. (2)
randomly allocating different k and d value for ego nodes. (3)
randomly shuffling the node entropy sequence for each node,
which is GraphRARE without relative entropy. (4) only adding
edges or removing edges in the original graphs. (5) replace the
reward function in DRL module.

1) Under the same k and d value setting: To fully investi-
gate the performance under different settings, we set the fixed
new neighbor number k from one to ten for the four enhanced
GNNs on three datasets (Chameleon, Squirrel, and Cora).
The experimental results are depicted in Figure 5, and two
patterns can be observed: (1) For the four backbone models

(a) GCN on Chameleon (b) GCN on Squirrel (c) GCN on Cora (d) GraphSAGE on Cham. (e) GraphSAGE on Squirrel

(g) GAT on Chameleon (h) GAT on Squirrel (i) GAT on Cora (j) H2GCN on Cham. (k) H2GCN on Squirrel (l) H2GCN on Cora

(f) GraphSAGE on Cora

Fig. 5: Ablation study on the DRL module’s contribution. Each heatmap compares GraphRARE’s performance with and without
the DRL module. The horizontal axis represents the number of deleted edges (d), while the vertical axis represents the number
of added edges (k). Deeper colors indicate more significant performance degradation compared to GraphRARE.

0 20 40 60 80 100

Epoch

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy
(%

)

(a) Training process of GraphRARE.

0 20 40 60 80 100

Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ho
m

op
hi

ly
 R

at
io

(b) Updating process of homophily ratio.

0 10 20 30 40

Episode

2

0

2

4

6

8

M
ea

n
Re

wa
rd

(c) Learning curve of DRL.

Fig. 6: The training process of GraphRARE. The subfigures illustrate the training performance of GCN-RARE on the Cornell
dataset. Subfigure 6a shows node classification accuracy, Subfigure 6b shows graph homophily ratio, and Subfigure 6c shows
the mean reward of the DRL module in each episode.

on the three datasets, the proposed framework with the DRL
module outperforms all of the models with a fixed new/deleted
neighbor number. As discussed above, this could be because
the model with a fixed k and d falls into a local sub-optimal
solution due to the mixture of useful information and noises
of remote nodes. (2) Removing edges has a greater impact on
performance than adding edges in most experiments. When
edges are removed, it can lead to the disconnection of nodes
or subgraphs, reducing the information flow and the ability of
GNNs to propagate messages effectively across the graph.

2) Under the random k and d value setting: We conduct
experiments for GCN on seven datasets that randomly allocate
different k-value for ego nodes. The experimental results
are illustrated in Table V (see GCN-RE), which shows that
randomly allocating different k-values for nodes can improve
the performance of the backbone GNN but is inferior to that of
using DRL module in some datasets. The results demonstrate
the effectiveness of both relative entropy and DRL module.

3) Without the relative entropy: The node entropy sequence
is built based on the value of node relative entropy. To
evaluate the contribution of the relative entropy, we randomly
shuffle the node entropy sequence for each node, which
equals “GraphRARE without relative entropy”. The results in
Table V (see GCN-RA) emphasize the criticality of defining
an appropriate metric for measuring the node importance when
optimizing the graph topology.

4) Without adding or removing edge operation: In our
framework, we jointly train the GNN and DRL module to
optimize the graph topology by simultaneously adding and
removing edges. The results in Table V (see GCN-RARE-add
and GCN-RARE-remove) highlight the significance of adding
informative new neighbors and removing noisy neighbors are
both important.

5) Alternative reward function: The reward function is
crucial as it guides the policy towards optimized decisions. In
order to explore the impact of different reward design choices

TABLE VI: Comparisons in terms of real running time. Those
appended by an asterisk [∗] denotes SOTA models. The
relative entropy is only computed once before model training.

Method Chameleon Squirrel Cornell Texas Wisconsin

GCN 11.36 13.3 9.00 9.32 9.32
GAT 34.10 57.16 21.52 20.68 21.90
GraphSAGE 12.68 13 11.04 11.16 12.70
H2GCN 25.52 57.46 13.58 16.18 15.62

SimP-GCN∗ 35.70 44.86 19.68 18.64 20.68
HOG-GCN∗ 77.28 246.60 56.46 55.05 53.34

GCN-RARE (ours) 57.44 186.12 16.40 19.38 16.58
GAT-RARE (ours) 66.34 209.88 33.70 26.98 25.77
GraphSAGE-RARE (ours) 41.06 95.04 24.17 28.72 26.11
H2GCN-RARE (ours) 70.61 229.07 22.04 25.09 31.29

Entropy Computation 28.67 266.48 0.0596 0.0615 0.1974

on the final performance of our model, we replace the reward
function in Eq. 11 with AUC score. The results in Table V (see
GCN-RARE-reward) show that an appropriate reward function
is beneficial for guiding the optimization process.

G. Efficiency Study

To further show the efficiency of our GraphRARE, we com-
pare our approach with baselines on the same device as shown
in Table VI. Each model is trained for 500 epochs on each
dataset and the average training time per epoch is reported.
Additionally, we report the computation time required for the
node relative entropy calculation, which is computed only
once before the model training. The computational cost is
comparable to or more efficient than SOTA models (Simp-
GCN and HOG-GCN).

H. Convergence of GraphRARE

Since the DRL algorithm and the GNN are trained jointly
in the proposed GraphRARE framework, the updating and
convergence process is indeed important. We visualize the
node classification accuracy during model training, the average
reward of reinforcement learning, and the homophily ratio
of the graph topology as shown in Figure 6. In Figure 6a,
the shadowed area is enclosed by the min and max value of
ten cross-validation training runs, and the solid line in the
middle is the mean value of each epoch. The result shows
that the GNN model converges well when training with the
DRL module under the GraphRARE framework. As shown in
Figure 6c, the mean episode reward of the DRL module does
not update very steadily at the beginning because the accuracy
and loss of GNN change a lot. When the framework gradually
converges, we can observe that the RL algorithm converges
with a stable learning curve. Figure 6b shows the homophily
ratio of the graph topology during the training process, the
ratio convergences to the mean value of 0.63. The results show
that the DRL module outputs a stable number of homogeneous
adjacent nodes at the later stage of model training, and GNN
also gives a stable classification result. In summary, in the
early stage of model training, the accuracy of GNN rises
quickly, the homophily ratio of the reconstructed graph varies
greatly, and the DRL module receives a large reward value
in each episode according to Eq. 11. In the later stage of

Chameleon Squirrel Cornell Texas Wisconsin Cora Pubmed
0.0

0.2

0.4

0.6

0.8

H
om

op
hi

ly
 R

at
io

s

0.23 0.22

0.30

0.11

0.21

0.81 0.80

0.25

0.51

0.66

0.85

0.29

0.67
0.62 0.60

0.86

0.52

Original graph

GCN-RARE(ours)

GraphSAGE-RARE(ours)

GAT-RARE(ours)

H2GCN-RARE(ours)

Fig. 7: Comparisons of the homophily ratios between the orig-
inal graph and the optimized graphs given by the GraphRARE
models on the seven datasets.

model training, GNN gives stable classification results, and
DRL outputs a stable number of homogeneous adjacent nodes.
Since the accuracy and loss of GNN converge to a stable
stage, the DRL module converges to the mean reward zero.
This suggests that the proposed GraphRARE framework can
optimize the graph topology adaptively.

I. Graph Topology Optimization Analysis

The GNNs based on a node message aggregation mecha-
nism are effective under the homophily assumption. Intuitively,
the GNN’s performance can be improved by increasing the
homophily ratio of a graph. The proposed GraphRARE frame-
work can achieve this goal by training the GNNs and DRL
jointly based on the relative entropy to optimize the graph
topology. The effectiveness of the proposed GraphRARE
framework is demonstrated through the homophily ratio com-
parison between the original and optimized graph topolo-
gies. The GCN-RARE, GraphSAGE-RARE, GAT-RARE, and
H2GCN-RARE are evaluated on all seven datasets. The results
are presented in Figure 7. The subdued enhancements in
the homophily ratio for the Chameleon and Squirrel datasets
could be attributed to their intricate graph topology. Notably,
these datasets exhibit denser connectivity compared to the
other five datasets, with nodes, on average, having about eight
times more connections. This increased density complicates
the task of identifying clear patterns and understanding node
similarities, thereby posing challenges in achieving notable
enhancements in the homophily ratio. The four enhanced
GraphRARE models all increase the homophily ratio over
the original graph by an average of 0.20 (GCN-RARE), 0.17
(GraphSAGE-RARE and GAT-RARE), and 0.18 (H2GCN-
RARE). One can see that the optimized graph topologies of the
GCN-RARE, GraphSAGE-RARE, GAT-RARE, and H2GCN-
RARE improve the homophily ratio, indicating the effective-
ness and generalization ability of the proposed framework.

J. Relative Entropy Analysis

Since the node relative entropy computation is an essential
module in our framework, we conduct a simple but intuitive
visualization experiment to demonstrate its effectiveness. As
shown in the Figure 8, we visualize the node relative entropy
between node pairs, where deep colors indicate higher entropy

values. Notably, pairs of nodes that share the same label exhibit
higher node relative entropy. Consequently, our GraphRARE
would connect the these high-entropy node pairs, aligning with
the homophily assumption.

label 1 label 2 label 3 label 4 label 5

label 1

label 2

label 3

label 4

label 5

(a) Wisconsin dataset

label 1 label 2 label 3 label 4 label 5 label 6 label 7

label 1

label 2

label 3

label 4

label 5

label 6

label 7

(b) Cora dataset

Fig. 8: The visualization of node relative entropy on Wisconsin
and Cora datasets. Deeper colors indicate higher entropy value
between node pairs.

VI. RELATED WORK

Graph Neural Networks. Most existing GNNs adopt the
message passing framework and use permutation invariant
local aggregation schemes to update node representations. For
instance, GCN [18] averages features of all neighboring nodes.
GAT [40] uses an attention mechanism to assign different
weights to neighboring nodes. GraphSAGE [11] samples fixed-
size neighbors of a node and aggregates their features for
realizing fast and scalable GNN training. However, traditional
GNNs suffer from a severe performance reduction under the
heterophily setting.
Relative Entropy on Graph Data. Relative entropy on graph
data is a measure of distance between nodes, which is calcu-
lated based on the probability distribution of a node set [3].
This metric can be used to rank nodes by importance [29].
The measurement of relative entropy between nodes has been
mainly based on structural parameters, such as the ego node
and its neighboring nodes’ degrees. Tian et al. [38] define the
node joint information entropy and node mutual information
between a node and its remote neighbors. Zhang et al. [50]
measure the similarity between nodes based on the relative
entropy of node degree. In addition to structural information of
nodes, node features are also important metrics in measuring
node information as they contain rich semantic information
(e.g., the research titles in citation networks). However, fewer
studies [26], [42] have considered node features and a local
topological structure jointly to measure mutual information
between node pairs. Considering node features and structural
information, the proposed framework introduces a node rela-
tive entropy to measure the similarity between node pairs.
Graph Topology Optimization. In recent years, research
efforts have been conducted on GNNs with heterophily. Their
main idea is to optimize the original graph topology by ex-
tending local neighbors to higher-order neighbors. UGCN [16]
connects the top-k similar node pairs to reconstruct the graph

topology by measuring the feature-level cosine similarity
between the ego node and remote nodes using the kNN
algorithm. In addition, through the node similarity analysis,
SimP-GCN [17] selects the top-k similar node pairs in terms
of feature similarity to construct new neighboring node sets.
Based on the structural information, MI-GCN [38] reconstructs
the graph topology by calculating mutual information between
node pairs and setting a fixed number of top-k new neighbors
and top-d deleted neighbors. However, the top-k selection
methods have mostly been based on a heuristic that the value
of k is diverse in different graphs and has to be chosen
adaptively, which will cost many human efforts and can
result in a mixture of useful and irrelevant information of
the multi-hop nodes. Additionally, it is crucial to address the
presence of noisy edges in the original graph as they can
impact the performance of GNNs. The original graph topology
optimization methods strongly rely on prior knowledge or
require conducting massive experiments to tune the k value.
However, these methods fail to achieve optimal results through
end-to-end training. To address this shortcoming, the proposed
framework adopts a deep reinforcement learning-based algo-
rithm to choose a proper value of k and d for each node in
a graph, which can be trained jointly with the GNN in an
end-to-end manner.

Deep neural networks is typically modeled as computational
graphs, and graph optimization techniques offer structured
and efficient computational graph representations that enhance
reasoning and elevate training efficiency within the expansive
field of database technology. MetaFlow [15] utilizes a rule-
based approach to uncover additional optimization opportuni-
ties in computation graphs. Tensor Comprehensions [39] uses
black-box auto-tuning and polyhedral optimizations. Addition-
ally, Fang et al. [5] propose a pruning algorithm and a dynamic
programming approach to refine computation graph optimiza-
tion further. Thus, the optimized graph topology not only
enhances the performance of GNN models on downstream
tasks but also contributes to the broader field of database
technology by offering a more organized and efficient data
representation.

VII. CONCLUSIONS

This work focuses on heterophilic graphs and designs an
innovative framework named by GraphRARE. In heterophilic
graphs, linked nodes have different features and class labels,
whereas the semantically related nodes might be multi-hop
away, which can lead to poor GNN’s performance. The main
objective of the GraphRARE framework is to discover remote
but informative nodes based on the defined node relative
entropy. In the framework, the DRL module and GNN are
combined to optimize the graph topology in an end-to-end
manner. Experimental results demonstrate that the proposed
framework can be easily adapted to the existing GNN mod-
els and can improve their performance on the benchmarks.
In future works, a number of extensions and potential im-
provements are possible, such as extending GraphRARE to
incorporate multi-modal graphs or spatial-temporal graphs.

VIII. ACKNOWLEDGMENTS

This work is supported in part by the National Key R&D
Program of China (Grant No.2021ZD0112901), National Nat-
ural Science Foundation of China (Grant No.6227073648) and
the Beijing Postdoctoral Research Foundation (No.2023-22-
97). Zhifeng Bao is supported in part by ARC DP240101211
and DP220101434.

REFERENCES

[1] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,
H. Harutyunyan, G. Ver Steeg, and A. Galstyan, “Mixhop: Higher-order
graph convolutional architectures via sparsified neighborhood mixing,”
in ICML, 2019, pp. 21–29.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[3] T. M. Cover, J. A. Thomas et al., “Entropy, relative entropy and mutual
information,” Elements of information theory, vol. 2, no. 1, pp. 12–13,
1991.

[4] L. Du, X. Shi, Q. Fu, X. Ma, H. Liu, S. Han, and D. Zhang, “GBK-GNN:
gated bi-kernel graph neural networks for modeling both homophily and
heterophily,” in WWW, 2022, pp. 1550–1558.

[5] J. Fang, Y. Shen, Y. Wang, and L. Chen, “Optimizing DNN computation
graph using graph substitutions,” Proc. VLDB Endow., vol. 13, no. 11,
pp. 2734–2746, 2020.

[6] Z. Fang, L. Xu, G. Song, Q. Long, and Y. Zhang, “Polarized graph
neural networks,” in WWW, 2022, pp. 1404–1413.

[7] K. Feng, C. Li, X. Zhang, and J. Zhou, “Towards open temporal graph
neural networks,” arXiv preprint arXiv:2303.15015, 2023.

[8] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019, pp. 1–12.

[9] A. P. Garcı́a-Plaza, V. Fresno-Fernández, R. Martı́nez-Unanue, and
A. Zubiaga, “Using fuzzy logic to leverage HTML markup for web page
representation,” IEEE Trans. Fuzzy Syst., vol. 25, no. 4, pp. 919–933,
2017.

[10] Z. Gu, K. Zhang, G. Bai, L. Chen, L. Zhao, and C. Yang, “Dynamic
activation of clients and parameters for federated learning over hetero-
geneous graphs,” in ICDE, 2023, pp. 1597–1610.

[11] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, vol. 30, 2017, pp. 1024–1034.

[12] Y. Han, G. Li, H. Yuan, and J. Sun, “An autonomous materialized view
management system with deep reinforcement learning,” in ICDE, 2021,
pp. 2159–2164.

[13] D. He, C. Liang, H. Liu, M. Wen, P. Jiao, and Z. Feng, “Block modeling-
guided graph convolutional neural networks,” in AAAI, 2022, pp. 4022–
4029.

[14] S. Horchidan, “Query optimization for inference-based graph databases,”
in VLDB, ser. CEUR Workshop Proceedings, V. Efthymiou and X. Hu,
Eds., vol. 3452, 2023, pp. 33–36.

[15] Z. Jia, J. Thomas, T. Warszawski, M. Gao, M. Zaharia, and A. Aiken,
“Optimizing DNN computation with relaxed graph substitutions,” in
Proceedings of Machine Learning and Systems, 2019.

[16] D. Jin, Z. Yu, C. Huo, R. Wang, X. Wang, D. He, and J. Han, “Universal
graph convolutional networks,” in NeurIPS, vol. 34, 2021, pp. 10 654–
10 664.

[17] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node similarity
preserving graph convolutional networks,” in WSDM, 2021, pp. 148–
156.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017, pp. 1–14.

[19] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[20] C. Li, Y. Tsai, and J. C. Liao, “Graph neural networks for tabular data
learning,” in ICDE, 2023, pp. 3589–3592.

[21] Y. Li, H. Yuan, Z. Fu, X. Ma, M. Xu, and S. Wang, “ELASTIC: edge
workload forecasting based on collaborative cloud-edge deep learning,”
in WWW, Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, and
G. Houben, Eds., 2023, pp. 3056–3066.

[22] Y. Li, H. Xiong, L. Kong, S. Wang, Z. Sun, H. Chen, G. Chen,
and D. Yin, “Ltrgcn: Large-scale graph convolutional networks-based
learning to rank for web search,” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, 2023, pp.
635–651.

[23] Y. Li, H. Xiong, L. Kong, R. Zhang, F. Xu, G. Chen, and M. Li, “Mhrr:
Moocs recommender service with meta hierarchical reinforced ranking,”
IEEE Transactions on Services Computing, 2023.

[24] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information theory, vol. 37, no. 1, pp. 145–151, 1991.

[25] M. Liu, Z. Wang, and S. Ji, “Non-local graph neural networks,” 2021.
[26] G. Luo, J. Li, H. Peng, C. Yang, L. Sun, P. S. Yu, and L. He, “Graph

entropy guided node embedding dimension selection for graph neural
networks,” IJCAI, pp. 2767–2774, 2021.

[27] X. Ma, Q. Chen, Y. Ren, G. Song, and L. Wang, “Meta-weight graph
neural network: Push the limits beyond global homophily,” in WWW,
2022, pp. 1270–1280.

[28] G. Namata, B. London, L. Getoor, B. Huang, and U. Edu, “Query-driven
active surveying for collective classification,” in 10th International
Workshop on Mining and Learning with Graphs, vol. 8, 2012, p. 1.

[29] Y. M. Omar and P. Plapper, “A survey of information entropy metrics
for complex networks,” Entropy, vol. 22, no. 12, p. 1417, 2020.

[30] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” NeurIPS, 2017.

[31] H. Pei, B. Wei, K. C. Chang, Y. Lei, and B. Yang, “Geom-gcn:
Geometric graph convolutional networks,” in ICLR, 2020, pp. 1–12.

[32] T. Peng, Y. Liang, W. Wu, J. Ren, Z. Pengrui, and Y. Pu, “Clgt: A
graph transformer for student performance prediction in collaborative
learning,” in AAAI, vol. 37, no. 13, 2023, pp. 15 947–15 954.

[33] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” JMLR, vol. 22, no. 268, pp. 1–8, 2021.

[34] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node
embedding,” Journal of Complex Networks, vol. 9, no. 2, p. cnab014,
2021.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[36] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, pp. 93–93, 2008.

[37] Z. Shen, C. Hu, and Z. Zhao, “Lynx: A graph query framework for
multiple heterogeneous data sources,” Proc. VLDB Endow., vol. 16,
no. 12, pp. 3926–3929, 2023.

[38] L. Tian and H. Wu, “MI-GCN: node mutual information-based graph
convolutional network,” in WWW, 2022, pp. 996–1003.

[39] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstrac-
tions,” CoRR, vol. abs/1802.04730, 2018.

[40] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018, pp. 1–12.

[41] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai et al., “Deep graph library: A graph-centric, highly-
performant package for graph neural networks,” 2019.

[42] T. Wang, D. Jin, R. Wang, D. He, and Y. Huang, “Powerful graph convo-
lutional networks with adaptive propagation mechanism for homophily
and heterophily,” in AAAI, 2022, pp. 4210–4218.

[43] C. Wu, C. Wang, J. Xu, Z. Fang, T. Gu, C. Wang, Y. Song, K. Zheng,
X. Wang, and G. Zhou, “Instant representation learning for recommen-
dation over large dynamic graphs,” in ICDE, 2023, pp. 82–95.

[44] Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra, “Two sides
of the same coin: Heterophily and oversmoothing in graph convolutional
neural networks,” in ICDM, 2022, pp. 1287–1292.

[45] T. Yang, Y. Wang, Z. Yue, Y. Yang, Y. Tong, and J. Bai, “Graph pointer
neural networks,” in AAAI, 2022, pp. 8832–8839.

[46] Y. Yang, Z. Guan, J. Li, W. Zhao, J. Cui, and Q. Wang, “Interpretable and
efficient heterogeneous graph convolutional network,” TKDE, vol. 35,
no. 2, pp. 1637–1650, 2023.

[47] H. Yuan and G. Li, “A survey of traffic prediction: from spatio-temporal
data to intelligent transportation,” Data Sci. Eng., vol. 6, no. 1, pp. 63–
85, 2021.

[48] H. Yuan, G. Li, and Z. Bao, “Route travel time estimation on A road
network revisited: Heterogeneity, proximity, periodicity and dynamicity,”
Proc. VLDB Endow., vol. 16, no. 3, pp. 393–405, 2022.

[49] H. Yuan, G. Li, Z. Bao, and L. Feng, “An effective joint prediction model
for travel demands and traffic flows,” in ICDE, 2021, pp. 348–359.

[50] Q. Zhang, M. Li, and Y. Deng, “Measure the structure similarity of nodes
in complex networks based on relative entropy,” Physica A: Statistical
Mechanics and its Applications, vol. 491, pp. 749–763, 2018.

[51] Y. Zhang, Q. Yao, L. Yue, X. Wu, Z. Zhang, Z. Lin, and Y. Zheng,
“Emerging drug interaction prediction enabled by flow-based graph
neural network with biomedical network,” CoRR, vol. abs/2311.09261,
2023.

[52] Y. Zhang, Z. Zhou, Q. Yao, X. Chu, and B. Han, “Adaprop: Learning
adaptive propagation for graph neural network based knowledge graph
reasoning,” in SIGKDD. ACM, 2023, pp. 3446–3457.

[53] Y. Zhang, W. Wang, H. Yin, P. Zhao, W. Chen, and L. Zhao, “Discon-
nected emerging knowledge graph oriented inductive link prediction,”
in ICDE, 2023, pp. 381–393.

[54] H. Zhao, Q. Yao, and W. Tu, “Search to aggregate neighborhood for
graph neural network,” in ICDE, 2021, pp. 552–563.

[55] J. Zhao, Z. Zhou, Z. Guan, W. Zhao, W. Ning, G. Qiu, and X. He,

“Intentgc: A scalable graph convolution framework fusing heterogeneous
information for recommendation,” in SIGKDD, 2019, pp. 2347–2357.

[56] S. Zheng, W. Wang, J. Qu, H. Yin, W. Chen, and L. Zhao, “MMKGR:
multi-hop multi-modal knowledge graph reasoning,” in ICDE, 2023, pp.
96–109.

[57] X. Zheng, Y. Liu, S. Pan, M. Zhang, D. Jin, and P. S. Yu, “Graph neural
networks for graphs with heterophily: A survey,” 2022.

[58] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[59] G. Zhu, Z. Zhu, W. Wang, Z. Xu, C. Yuan, and Y. Huang, “Autoac:
Towards automated attribute completion for heterogeneous graph neural
network,” in ICDE, 2023, pp. 2808–2821.

[60] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations and
effective designs,” in NeurIPS, vol. 33, 2020, pp. 7793–7804.

	Introduction
	Preliminary
	Basic Concepts
	Problem Formulation

	Framework
	Methodology
	Node Relative Entropy Calculation
	Node Feature Entropy
	Node Structural Entropy
	Node Relative Entropy.
	Node Entropy Sequence Construction

	Deep Reinforcement Learning Module
	Node Feature Learning
	Model Training

	Experiments
	Datasets
	Compared Methods and Setup
	Hyper-parameter setting
	Node Classification
	Hyper-parameter Analysis
	Ablation Study
	Under the same k and d value setting
	Under the random k and d value setting
	Without the relative entropy
	Without adding or removing edge operation
	Alternative reward function

	Efficiency Study
	Convergence of GraphRARE
	Graph Topology Optimization Analysis
	Relative Entropy Analysis

	Related Work
	Conclusions
	Acknowledgments
	References

