
ELAKT: Enhancing Locality for Attentive Knowledge Tracing

YANJUN PU, School of Computer Science and Engineering, Beihang University, Beijing, China and Zhong-

guancun Laboratory, Beijing, China

FANG LIU, Institute of Artificial Intelligence, Beihang University, Beijing, China

RONGYE SHI, Institute of Artificial Intelligence, Beihang University, Beijing, China

HAITAO YUAN, Department of Computer Science and Engineering, Tsinghua University, Beijing, China

RUIBO CHEN, Institute of Artificial Intelligence, Beihang University, Beijing, China
TIANHAO PENG, School of Computer Science and Engineering, Beihang University, Beijing, China

WENJUN WU, Institute of Artificial Intelligence, Beihang University, Beijing, China

Knowledge tracing models based on deep learning can achieve impressive predictive performance by lever-

aging attention mechanisms. However, there still exist two challenges in attentive knowledge tracing (AKT):

First, the mechanism of classical models of AKT demonstrates relatively low attention when processing exer-

cise sequences with shifting knowledge concepts (KC), making it difficult to capture the comprehensive state

of knowledge across sequences. Second, classical models do not consider stochastic behaviors, which nega-

tively affects models of AKT in terms of capturing anomalous knowledge states. This article proposes a model

of AKT, called Enhancing Locality for Attentive Knowledge Tracing (ELAKT), that is a variant of the deep KT

model. The proposed model leverages the encoder module of the transformer to aggregate knowledge embed-

ding generated by both exercises and responses over all timesteps. In addition, it uses causal convolutions to

aggregate and smooth the states of local knowledge. The ELAKTmodel uses the states of comprehensive KCs

to introduce a prediction correction module to forecast the future responses of students to deal with noise

caused by stochastic behaviors. The results of experiments demonstrated that the ELAKT model consistently

outperforms state-of-the-art baseline KT models.

CCS Concepts: •Applied computing→ Education; • Information systems→Data mining; • Comput-

ing methodologies→ Neural networks;

Additional Key Words and Phrases: Knowledge tracing, self-attention, causal convolution, knowledge aggre-

gation

This work is supported by the State Key Laboratory of Software Development Environment (Funding No. SKLSDE-2020ZX-

01) and Zhongguancun Laboratory.

Authors’ addresses: Y. Pu, School of Computer Science and Engineering, Beihang University, Xueyuan Road No.37, Bei-

jing 100191, China, and Zhongguancun Laboratory, Beijing, China; e-mail: buaapyj@buaa.edu.cn; F. Liu, R. Shi (Corre-

sponding author), R. Chen, and W. Wu (Corresponding author), Institute of Artificial Intelligence, Beihang University,

Beijing, China; e-mails: liufangg@buaa.edu.cn, shirongye@buaa.edu.cn, chenruibo@buaa.edu.cn, wwj09315@buaa.edu.cn;

H. Yuan (Corresponding author), Department of Computer Science and Engineering, Tsinghua University, Beijing, China;

e-mail: yhaitao45@163.com; T. Peng, School of Computer Science and Engineering, Beihang University, Beijing, China;

e-mail: pengtianhao@buaa.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1046-8188/2024/04-ART112

https://doi.org/10.1145/3652601

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

https://orcid.org/0000-0001-6154-1247
https://orcid.org/0009-0006-6517-3959
https://orcid.org/0000-0003-4298-9358
https://orcid.org/0000-0001-6721-065x
https://orcid.org/0009-0009-9587-3798
https://orcid.org/0000-0002-9910-2298
https://orcid.org/0000-0003-2998-8828
mailto:permissions@acm.org
https://doi.org/10.1145/3652601
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652601&domain=pdf&date_stamp=2024-04-26

112:2 Y. Pu et al.

ACM Reference Format:

Yanjun Pu, Fang Liu, Rongye Shi, Haitao Yuan, Ruibo Chen, Tianhao Peng, and WenJun Wu. 2024. ELAKT:

Enhancing Locality for Attentive Knowledge Tracing. ACM Trans. Inf. Syst. 42, 4, Article 112 (April 2024),

27 pages. https://doi.org/10.1145/3652601

1 INTRODUCTION

The Intelligent Tutoring System (ITS) has become increasingly important in online education
over the past decade because it can offer a personalized and adaptive learning experience for a
large number of students. A core component of the ITS is the Knowledge Tracing (KT) model,
which can trace the state of latent knowledge of individual students. This information is used to
support other components of the system in providing personalized guidance to enable students to
quickly achieve their learning outcomes [23, 36, 40].

The KT task can be regarded as a problem of supervised sequential learning. Specifically, given
a sequence of the history of a student’s historical interactions with exercises, the KT model aims
to predict the probability that the student correctly solves the exercise in the next interaction and
infer the student’s knowledge state during it. Different kinds of KT models have been developed
in recent years, and can be roughly divided into two categories: structured KT models and deep
KT models [21].

Structured KT methods, such as Bayesian Knowledge Tracing (BKT) [9], define variables
based on the principles of cognitive and educational sciences. This makes it easy for the instructor
to interpret the results of the predictions when assessing the student’s performance. Early imple-
mentations of structured KT methods have limitations in modeling multi-dimensional states of
knowledge because the relevant models typically assume that each exercise (or question) at en-
countered at time t is designed for a single knowledge-related concept. Enhanced solutions have
been proposed based on the Q-matrix [38], a sparse matrix to measure the cognitive mastery of a
concept that associates an exercise at to multiple knowledge concepts (KC). That is, answering
at correctly requires mastering multiple KCs.

Deep neural network (DNN)-based models, such as deep knowledge tracing (DKT) [34],
have recently been developed to solve KT tasks. Early efforts used recurrent neural networks

(RNNs) [29] with long short-term memory (LSTM) [20] units to model learning by students,
and can provide important advantages in predictions without requiring features engineered by
a human operator. Attentive KT models have better predictive performance than standard KT
models. The attention mechanism in them can capture the relationships between exercises and
their relevance to a student’s knowledge states [3]. This property enables the model to access any
part of the history of the student’s states of knowledge, where this makes it suitable for capturing
recurring patterns with long-term dependencies.
However, two challenges to attentive knowledge tracing (AKT) persist. First, in case the

historical exercises are diverse, the input embeddings for queries and the keys used in the self-
attentionmechanism are significantly distinct. The prevalent dot product-based self-attention thus
fails to adequately capture the comprehensive knowledge state that is to be mapped to a com-
plete set of KCs, causing the model prone to anomalies [19, 25, 28]. This means that when knowl-
edge embedding is associated only with the current exercise, such as in the KT scenario shown in
Figure 1, the comprehensive knowledge state cannot be appropriately captured. Second, the deep
KT model does not consider anomalous interactions between students and exercises, that is, the
probability of a student guessing or slipping on an exercise [37]. Anomalous interactionswithin the
learning process are referred to as stochastic behaviors in KT. The mismatch between a student’s

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

https://doi.org/10.1145/3652601

ELAKT 112:3

Fig. 1. Illustration of an exercise–concept–knowledge state relationship. It is difficult to model the compre-

hensive knowledge state at a timestep by using prevalent methods. Knowledge aggregation can help solve

the problem of incomplete knowledge states.

response and the corresponding knowledge state leads to an incorrect inference by the self-
attention mechanism.
Inspired by memory-enhanced neural networks, some researchers have sought to explicitly

store the knowledge states of different concepts by introducing memory modules [2, 6]. This pro-
vides ideas for capturing a more accurate knowledge state in the deep KT model. In this article, we
aggregate the input knowledge embedding, and further aggregate and smooth hidden knowledge
states from the output of the self-attention mechanism to solve the problem of the inability to com-
prehensively capture the state of knowledge. The comprehensive state of knowledge is mapped to
the probability distribution that responds to the complete set of KCs. This probability distribution
is then used to predict students’ responses and solve the problem of noise caused by stochastic
behaviors. Our contributions here are three-fold:

(1) In order to capture more comprehensive knowledge states, we introduce two optional mod-
ules for aggregating knowledge embeddings: an encoder module and a causal convolution
module.

(2) We further leverage causal convolutions in a second encoder module to aggregate and
smooth the local states of knowledge from the output of the self-attention layer such that
comprehensive KCs can be obtained and used to address the first challenge above.

(3) Based on the comprehensive KCs obtained above, we introduce a prediction correction mod-
ule to forecast future exercises’ responses and handle the noise caused by stochastic behav-
iors. The proposed prediction correction module can help tackle the second challenge.

The remainder of this article is organized as follows: Section 2 discusses related work on struc-
tured KT and DNN-based KT, and Section 3 describes the preliminary structure of the encoder
module and the causal convolution module. Section 4 details the structure of the proposed ELAKT
model. In Section 5, we present details of the implementation and the experimental results of the
proposed model, and compare it with state-of-the-art deep KTmodels. Section 6 verifies the effects
of aggregating the knowledge embeddings and provides visualizations of the complete KC used

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:4 Y. Pu et al.

for prediction. The final section summarizes the conclusions of this work and discusses future
directions of research in the area.

2 RELATEDWORK

2.1 Structured Knowledge Tracing Model

A structured KT method, such as the BKT, typically tracks students’ knowledge states over time
by using the hiddenMarkovmodel (HMM). However, it can track only the students’ mastery of
a single cognitive skill without specifying the difficulty of the exercises used to assess it. Recent re-
search on the BKT has focused on its extension to assess multiple skills. Brenes and Mostow [13]
proposed dynamic cognitive tracing to construct a cognitive model and a student model based
on longitudinal data on students. They subsequently introduced feature-aware student knowl-

edge tracing (FAST) [12] to use different skill-related features to quantify the difficulty of the
problem and the student’s ability as parameters of the KT model. These feature-based extensions
of the BKT heavily rely on expert knowledge when predefining features of the skill and subskills,
and do not use techniques of automatic discovery (e.g., the Q-matrix). The automatic temporal

cognitive (ATC) model is an evolution of the cognitive diagnosis model (CDM) and the KT
model. It incorporates multi-dimensional knowledge states and temporal changes, including skill
enhancement and forgetting factors. It uses a non-linear state-space framework to encode multi-
dimensional levels of the KC and a Q-matrix of the learning items. The ATC model is also capable
of deriving values of the Q-matrix from trajectories of student learning in a data-driven approach.
Therefore, it is an ideal candidate for governing DNNs in the context of KT in terms of improved
interpretability.

2.2 DNN-based Knowledge Tracing Models

2.2.1 DKT and its Extensions. DKT uses RNNs and the LSTM to model students’ learning, and
exhibits impressive prediction-related performance without requiring human-engineered features.
Examples include the recency effect [5] and the contextualized trial sequence [22]. In teh DKTmod-
els, a sequence of hidden states (h1,h2, . . . ,hn) is computed to encode the sequential information
obtained from previous interactions. In each timestep t , the model calculates the hidden state ht
and the student’s response pt as follows:

ht = Tanh (Whxxt +Whhht−1 + bh)
pt = σ

(
Whyht + bp

) . (1)

However, the latent encoding of the knowledge state in the DKT cannot consistently depict the
students’ mastery of the KCs and predict temporal changes in the knowledge state over time. To
solve the major problems of the DKT in terms of modeling the KC, the DKT+ model introduces
regularization terms, which correspond to reconstruction and waviness, to the loss function of the
original DKT model to enhance the consistency of predictions. The results of experiments have
shown that the regularized loss function can solve the above two problems without degrading
the performance of the DKT on the original task [43]. Chen et al. [7] sought to solve the problem
of data sparsity by incorporating prerequisite concept pairs as constraints into the DKT model,
and to improve predictions of the students’ mastery of concepts while offering a partial interpreta-
tion of the results. Wang et al. [42] introduced HawkesKT, a novel approach in KT that leverages
the point process to dynamically model temporal cross-effects. Recognizing that a student’s pro-
ficiency in a knowledge component (KC) is influenced not only by their own past interactions
with that KC but also by interactions with other KCs, the model captures these intricate cross-
effects. Crucially, it acknowledges the varying temporal evolutions of these effects on different

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:5

KCs. This model marks a significant step in KT, offering a more nuanced understanding of how
students’ knowledge evolves over time. However, despite these advantages, the hidden state vari-
ables of a neural network cannot explicitly represent explainable educational meanings without
inducing a prior cognitive structure and the attendant constraints. It remains a critical challenge
to accurately characterize changes in the students’ knowledge states in order to support accurate
predictions in complex and diverse question-answering scenarios by using a DNN model.

2.2.2 Deep Knowledge Tracing with Memory Augmentation. To enhance the capacity of stor-
age of the knowledge state, memory-aware KT, which is inspired by memory-augmented neural
networks [14], introduces an external memory module to store the knowledge states and update
the corresponding mastery of knowledge by the student. The dynamic key—value memory

network (DKVMN) [48] initializes a static matrix called a key matrix to store latent KCs, and a
dynamic matrix called a value matrix to store and update the mastery of the corresponding KCs
through read and write operations over time. The DKVMN defines a static key matrix to represent
concepts and a dynamic value matrix to track the state of the students’ concepts in the framework
of thememory-augmented neural network (MANN). The DKVMN can automatically discover
the concepts underlying exercises, where this is typically obtained through manual annotations,
and can depict the changing knowledge state of a student. In addition, the sequential key—value
memory network (SKVMN) [1] can address the limitation in the DKT and the DKVMNwhereby
the KCs required to answer questions in past exercises in a sequence are not necessarily relevant
to the KCs required to answer questions in the current exercise. A modified LSTM called Hop-
LSTM is used in the SKVMN to hop across LSTM cells according to the relevance of the latent KCs,
where this can be used to directly capture long-term dependencies. When calculating the growth
in knowledge owing to a new exercise in the writing process, the SKVMN enables it to consider
the current state of knowledge in order to obtain accurate results. Furthermore, Deep-IRT is a
synthesis of the model of item response theory (IRT) and a KT model based on the DKVMN to
render deep learning-based KT explainable. Specifically, the DKVMN model is used to process the
student’s learning trajectory and estimate the level of difficulty of the item as well as the student’s
ability over time. Then, the IRTmodel is used to estimate the probability that a student will answer
an item correctly by using the estimated knowledge state and the difficulty of the given item.

2.2.3 Deep Knowledge Tracing with Attention Mechanism. The attention mechanism [26, 33, 39,
44–47] is effective on tasks involving sequence modeling. The idea underlying this mechanism is
to focus on the relevant elements of the input signals when predicting the output. Self-attentive
knowledge tracing (SAKT) [31] is the first method to use attention mechanisms in the con-
text of KT. Attention mechanisms are more flexible than recurrent and memory-based neural
networks. The results of extensive experiments on a variety of real-world datasets suggest that
the SAKT model can outperform state-of-the-art methods, and is one order of magnitude faster
than RNN-based approaches. Pandey and Srivastava [32] also introduced a novel Relation-aware
self-attention model for Knowledge Tracing (RKT), which integrates exercise relation information,
student performance data, and student forget behavior into the contextual information, showing
improved performance on three real-world datasets and providing interpretable attention weights
for visualizing the relation between interactions and temporal patterns in the learning process.
Ghosh et al. [11] proposed a context-aware AKT model by incorporating the self-attention mech-
anism into cognitive and psychometric models. They defined context-aware representations of
exercises and responses by using a monotonic attention mechanism to summarize every learner’s
historical performance on an appropriate time scale. They used the Rasch model to capture differ-
ences between exercises covering the same concept. Separated self-attentive neural knowledge
tracing (SAINT), proposed by Choi et al. [8], has an encoder—decoder structure in which the

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:6 Y. Pu et al.

sequences of embeddings of the exercise and the response are entered into the encoder and the
decoder, respectively. The encoder applies the self-attention layers to the sequence of exercise em-
beddings, and the decoder alternately applies self-attention layers and encoder—decoder attention
layers to the sequence of response embeddings. This separation of the inputs allows the model to
stack attention layers multiple times, resulting in an improvement in the area under the receiver-
operating characteristic curve (AUC). This study is the first to propose an encoder–decoder
model for KT that applies deep self-attentive layers separately to the exercises and the responses.
Based on SAINT, SAINT+ [35] has an encoder-decoder structure in which the encoder applies
self-attention layers to a stream of exercise embeddings, and the decoder alternately applies self-
attention layers and encoder—decoder attention layers to streams of response embeddings and the
output of the encoder. Moreover, SAINT+ incorporates two temporal feature embeddings into its
response embeddings: the elapsed time, the time taken for a student to answer a question, and the
lag time, the interval between adjacent learning activities. He et al. [18] addresses the need for en-
hanced representation learning (RL) in Deep Learning-based Knowledge Tracing (DLKT)
methods, an area often overlooked in favor of model structure innovations. It explores four key
types of factors: exercise and skill attributes, learners’ historical performance, and their forget-
ting behavior. This work highlights the critical role of nuanced RL in advancing the effectiveness
of DLKT methods. He et al. [17] also presented the Memory-augmented Attentive Network

(MAN) to tackle the Skill Switching Phenomenon (SSP) in KT, utilizing advanced deep learning
techniques. MAN employs memory-augmented neural networks for encoding long-term memory
knowledge and attention-based networks to process recent knowledge. The integration of a novel
context-aware attention mechanism effectively harmonizes these two types of knowledge. This in-
novative approach significantly enhances themanagement of SSP in KT. Cui et al. [10] introduced a
novel model, MRT-KT, that enables fine-grained interaction modeling between question-response
pairs by implementing a unique relation encoding scheme based on KCs and student performance.
However, none of the prevent methods can overcome issues related to predictive accuracy that are
caused by inadequate capture of the knowledge state in complex scenarios. Moreover, the problem
of noise induced by anomalous interaction has not been adequately considered and solved.

3 PRELIMINARIES

In this section, we provide preliminariy information on the encoder module and the causal con-
volution module, which are two standard components frequently used in the proposed ELAKT
model.

3.1 Encoder Module

The encoder module is an essential sub-module in the well-known transformer model. Assume
Q ∈ RT×Dm , K ∈ RT×Dm , and V ∈ RT×Dm , with each representing the encoder’s input of queries,
keys, and values, respectively. When there are Dh heads, the encoder module projects each Q , K ,

and V to a latent space by multiplying the matricesW Q
i ∈ R

Dm×Dm/Dh ,W K
i ∈ R

Dm×Dm/Dh , and

W V
i ∈ R

Dm×Dm/Dh , that is,

Qi = QW
Q

i ,Ki = KW K
i ,Vi = VW

V
i . (2)

The obtainedQi , Ki , and Vi are then fed forward to a masked multi-head attention layer.

3.1.1 Masked Multi-head Attention Layer. Because the keys and values after the current posi-
tion include the information to be predicted, a masking mechanism is used in the masked multi-
head attention layer, whereby only the lower-triangular portion of the scaled dot product [39]

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:7

matrix obtained fromQiKT
i is used to calculate the attention heads. Each attention head is calcu-

lated by:

headi = Softmax

(
Mask

(
QiKT

i√
Dm

))
Vi , (3)

Then, a concatenation of Dh attention heads (Dh = 4 by default in the ELAKT model) is multiplied
byW O ∈ RDm×Dm to aggregate all the obtained attention heads. This concatenated tensor is the
output of the masked multi-head attention layer, that is,

MultiHead (Q ,K,V) = Concat
(
head1, · · · ,headDh

)
W O . (4)

3.1.2 Position-wise Feed-forward Layer. The position-wise feed-forward layer is also known as
the position-wise feed-forward network (FFN). It is a fully-connected network that operates
separately and identically at each position:

FFN(M) = ReLU
(
MW 1 + b1

)
W 2 + b2, (5)

where M = Multihead (Q ,K,V). {W 1 ∈ RDm×(Dm∗z), W 2 ∈ R(Dm∗z)×Dm } and {b1 ∈ RDm∗z ,
b2 ∈ RDm } are trainable weight matrices and bias vectors, respectively. Typically, the intermediate
dimension (Dm ∗ z) of the FFN is set to be larger than Dm [27]. In ELAKT model, the value of z is
set to four by default.

3.1.3 Residual Connection and Normalization. The encoder module uses the residual connec-
tion [16] and the layer normalization [4] techniques. Residual connection is a commonly used
structural technique in the transformer model that can help avoid the problem of vanishing or
exploding gradients while improving the speed of convergence of the model. Given the definitions
of the aforementioned two layers, the encoder module can be written as:

M = V + Dropout (Multihead (LayerNorm (Q ,K,V)))
H = M + Dropout(FFN(LayerNorm(M))) . (6)

H ∈ RT×Dm is the output of encoder module, where ht is the t th row of H . The Multihead(·)
denotes the masked multi-head attention layer defined in 3.1.1 and LayerNorm(·) denotes the layer
normalization operation. The operations in (6) constitute the content of an encoder layer:

H = Encoder(Q ,K,V). (7)

Note that sequentially aligned multiple copies of encoder layers constitute the encoder module. By
default, the number of copies is set to one in this article.

3.2 Causal Convolution Module

The causal Convolution [30] is a type of convolution operation in deep learning, particularly in
sequence-to-sequence models. For the special case of the standard 1D convolution, the causal con-
volution can be easily implemented by applying left zero-padding to the input of a normal convo-
lution. Mathematically, given a sequence input Y = (y1, . . . ,yt , . . . ,yT),yt ∈ RDm ,Y ∈ RDm×T ,
andW ∈ RDm×Dm×K is the convolution kernel (trainable weight matrices), the causal convolution
at timestep t is represented as

ct = (c1t , c2t , . . . , c
Dm

t) = CausalConv1d(Y ,kernel_size = K)

cit = Y ⊗Wi =

Dm−1∑
j=0

K−1∑
k=0

Wi,j,k · YDm−j,t−k
, (8)

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:8 Y. Pu et al.

Fig. 2. The overall structure of the ELAKT model consisting three modules: those for aggregating the input

knowledge embedding, aggregating and smoothing hidden knowledge state, and multi-timestep prediction

correction.

where ct ∈ RDm , K is the kernel size, and Dm is the number of input and output channels. The
causal convolution is a type of time-limited convolution that is commonly used for processing se-
quences in the time sequence domain, such as in speech recognition and audio processing [24, 41].
Thus, the output ct of the causal convolution does not depend on any of the future input timesteps
(yt+1, yt+2,. . ., yT). Recently, several researchers have explored the use of the causal convolution
as a module for aggregating contextual information [15] and contextual smoothing [49] in the do-
main of time sequence. These approaches have yielded promising improvements in performance
on the respective tasks. We use the causal convolution module for two distinct purposes: 1) ag-
gregating the input knowledge embeddings (Section 4.2), and 2) aggregating and smoothing the
knowledge states (Section 4.3).

4 METHODOLOGY

In this section, we first present the problem formulation and then introduce the proposed ELAKT
method, which is based on the attentive KT model. An overview of the architecture of ELAKT is il-
lustrated in Figure 2. It consists of three major modules: those for aggregating the input knowledge
embedding, aggregating and smoothing the hidden knowledge states, and correcting the predic-
tions over multiple timesteps. In this architecture, the first encoder layer and causal convolution
layer in the bottom module are two interchangeable options for aggregating the input knowledge
embeddings. The second encoder layer in the middle module is designed to capture temporal de-
pendencies and leverage the attention mechanism. The second causal convolution layer stacked
on top of it is designed to aggregate and smooth the student’s hidden knowledge states to improve
the attention of the contextual knowledge state. This causal convolution layer can help tackle the
presence of stochastic behaviors, that is, anomalies in the knowledge state.

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:9

4.1 Problem Formulation

Let Q = {a1,a2, . . . ,aM } be the set of all exercises and M be the number of exercises, where
at ∈ N+ is the index of the exercise at timestep t . Let E = {c1, c2, . . . , cL} be the set of all KCs and
L be the number of KCs, where ct ∈ N+ is the index of the exercise at timestep t . Let rt ∈ {0, 1}
be the correctness of the student’s answer to exercise at at time t , where 0 represents an incorrect
response and 1 represents the correct one. AKT problem can be defined as follows:Given a student’s
past interactions with exercises Z = {(a1, r1) , . . . , (at , rt)}, predict the probabilities of the student’s
responses in the upcoming j timesteps, that is, {P (rt+i = 1 | Z) |i = 1, 2, . . . , j}. Note that in most
real-world educational settings, the size of the exercise set is considerably larger than the set of
concepts invoked by it, and many exercises are assigned to only a few students. Therefore, using
the index of the exercise as the input yields sparse knowledge embeddings. To avoid this issue, a
majority of current KTmethods [11, 31] use concepts to assign indices to exercises, and all exercises
covering the same concept are treated as a single exercise. In this case, ct = at and M = L. We
make use of this setting as well. The mathematical notation used in this article is summarized in
Table 1. The first part includes scalars, the second includes vectors, and the third includes sets.

4.2 Aggregating the Input Knowledge Embedding

At timestep t , themodel receives the input (at , rt).We define the following representation of exercise
encoding x int through the one-hot encoding of exercise at :

x int = (o0,o1, . . . ,oL); x int ∈ {0, 1}L, (9)

where L is the total number of concepts, oat = 1, and the remaining terms are zero. We also define
the representation of knowledge encoding yin

t ∈ {0, 1}2L based on the representation of exercise

encoding x int and the response rt to it:

yin
t =

{ [
x int ⊕ 0

]
if rt = 1[

0 ⊕ x int
]

if rt = 0
, (10)

where 0 = (0, 0, . . . , 0) with the length of L, and ⊕ is the operation that concatenates two vectors.
For the same exercise, the knowledge states of correct and incorrect responses should be distin-
guishable. To this end, in our design, if the non-zero element appears in the first half of the vector,
it implies a correct response with the location of the non-zero element indicating which exercise
is correctly answered. Similarly, the appearance of non-zero elements in the second half of the
vector implies an incorrect response.

The exercise encoding x int is fed to a linear fully-connected (FC) layer to generate the exercise

embedding xt ∈ RDm , which is treated as the query qt in the ELAKT model. The knowledge
encoding yin

t is fed to another FC layer to generate the knowledge embedding yt ∈ RDm , which

is treated as both the aggregated keys k
aggr
t and the aggregated valuesv

aggr
t . Specifically, we have

qt = xt = FC(x int ; dim_in = L, dim_out = Dm);
k
aggr
t = v

aggr
t = yt = FC(yin

t ; dim_in = 2L, dim_out = Dm).
(11)

In the self-attention layers of a traditional transformer, the similarities between queries and keys
are computed based on their point-wise values. A common practice is to use the embeddings of
concept IDs as queries, but this leads to poor attention to exercises involving different concepts,
making it difficult to capture the comprehensive knowledge state. In this section, we introduce
two methods to aggregate the input knowledge: the causal convolution, and the encoder module.
Figure 3 illustrates details of the processing of the input data by using these two methods.

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:10 Y. Pu et al.

Table 1. Notations and Descriptions

Notation Description

t timestep
at index of exercise (or item) in timestep t
ct index of KC in timestep t
rt response correctness in timestep t
scit the state of knowledge of concept ci in timestep t
pat+1t the probability of correctly responding to exercise at+1 based on the estimated prob-

ability pt in timestep t
β decay coefficient in the module “multi-timestep prediction correction” with default

setting of 0.5
u predicted response length in module “multi-timestep prediction correction” with

default setting of 2
T length of sequence of the student’s responses with default setting of 80
M number of exercises
N number of students
L number of concepts
Dm dimensionality of the ELAKT model’s hidden states with default setting of 128
n kernel size of causal convolution in module “input knowledge embedding

aggregation”
e kernel size of causal convolution in module “aggregating and smoothing hidden

knowledge state”

x representation of exercise embedding
y representation of knowledge embedding
p probability of correctly answering the exercise
q query of the multi-head attention in the module “hidden knowledge state

aggregation”
k,v key and value of the multi-head attention in the module “hidden knowledge state

aggregation”
kaggr,vaggr key and value of the multi-head attention in the module “input knowledge embed-

ding aggregation”
c student’s knowledge state output by the causal convolution
h student’s hidden knowledge state
s student’s full state of KC

Z the set of exercise-based interactions of a single student
Q the set of all exercises
E the set of all concepts

1) Causal Convolution. We use the causal convolution of kernel size n to transform the
inputs into values and keys (note that the query remains unchanged and the exercise em-
bedding xt) is used:

kt = vt = CausalConv1d(yt−n+1, . . . ,yt−1,yt ;kernel_size = n). (12)

Equation (8) describes how the causal convolution generates a sequence by aggregating the
input embedding of contextual knowledge. Specifically, the convolution kernelW performs
a weighted sum of the current timestep and its previous timesteps in the input sequence.
This weighted sum can be considered to be an aggregation of the contextual information.

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:11

Fig. 3. Detailed structures of two methods to aggregate input embeddings.

Thus, the generated key kt and valuevt contain more comprehensive knowledge such that
the similarity can be appropriately calculated according to information on the implicit KC
of the exercises. At the same time, the causal convolution ensures that kt andvt can obtain
information from only y1 toyt , thus guaranteeing that the temporal order is not violated in
the exercise sequence.
2) Encoder. We also introduce another option, that is, the encoder in Equation (7), as an
alternative for aggregating contextual knowledge embeddings. The process can be expressed
as follows:

Qaggr = (q1, . . . ,qt , . . . ,qT); Qaggr ∈ RT×Dm

Kaggr = (kaggr
1
, . . . ,k

aggr
t , . . . ,k

aggr

T
); Kaggr ∈ RT×Dm

V aggr = (vaggr
1
, . . . ,v

aggr
t , . . . ,v

aggr

T
); V aggr ∈ RT×Dm

R = Encoder(Qaggr,Kaggr,V aggr); R ∈ RT×Dm

. (13)

The core component of the encoder is the self-attentionmechanism. It allows themodel toweigh
the importance of each input in relation to every other input in the sequence. In each timestep, the
masked self-attention mechanism computes attention scores as the output based on the previous
input knowledge embedding. In this way, the output representation incorporates information from
other input knowledge embeddings.
Let kt = vt = Rt . Thus far, we have obtained qt , kt , andvt by using either of the two methods

introduced above. Note that both the causal convolution and masked self-attention in the encoder
can aggregate contextual information while preserving its temporal order. However, the methods
differ in their ability to capture dependencies with a flexible range: The receptive field of the causal
convolution grows linearlywith the number of layers, and depends on the size of hyper-parameters
of the kernel, while masked self-attention in the encoder can capture dependencies with a flexible
range regardless of the size of the kernel or the number of layers.

4.3 Aggregating and Smoothing Hidden Knowledge State

The qt , kt , and vt obtained in the previous step are inputted to another encoder. The encoder
module takes Qin ∈ RT×Dm , Kin ∈ RT×Dm , and Vin ∈ RT×Dm to represent the sequences of
queries, keys, and values, respectively:

Qin = (q1,q2, ...,qT);
Kin = (k1,k2, ...,kT);
Vin = (v1,v2, ...,vT);
H = Encoder(Qin ,Kin ,Vin) = (h1, . . . ,hT); H ∈ RT×Dm ,

(14)

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:12 Y. Pu et al.

where ht ∈ RDm is the t-th row of H . Traditional attentive KT methods predominantly consider
ht as the knowledge state at timestep t to predict the response at the next timestep based on ht .
However, when the local exercise at is altered from invoking a KC c1 to a new one c2, this transition
may cause the student’s state of hidden knowledge ht to fluctuate, where this is inconsistent with
the actual learning process. Furthermore, the presence of stochastic behaviors leads to anomalies
in the knowledge state. Therefore, we introduce a layer of causal convolution after the encoder
to improve the attention of the contextual knowledge state. This process can be formulated as
follows:

ct = CausalConv1d (ht−e+1, . . . ,ht−1,ht ;kernel_size = e); ct ∈ RDm . (15)

The causal convolution incorporates the knowledge states ht−e+1,. . .,ht−1 adjacent to ht . Assum-
ing that a student’s knowledge state does not change drastically between adjacent timesteps, the
weighted summation of the causal convolution can be considered to be a mechanism to smooth
the knowledge state. Furthermore, the number of convolution kernels in the causal convolution
depends on the number of output channels. During the convolution operation, the input sequence
is convolved with the corresponding convolution kernelWi to obtain the corresponding results
of the output channel cit . This setting is used to learn and extract rich features and patterns to
aggregate multiple components of the knowledge state in the input knowledge state. The “ker-
nel_size” hyper-parameter, that is, e , can be tuned to improve predictive accuracy. We will com-
prehensively discuss the impact of the hyper-parameter e on the predictive performance of the
model in our ablation experiment later in this article. Traditional attentive KT methods map ht
to a one-dimensional (1D) scalar through a fully-connected layer to predict the probability of a
student responding to the exercise. The ELAKT model uses knowledge aggregation and the causal
convolution of knowledge states such that the matrix ct contains the comprehensive knowledge
state.
We then add a fully-connected layer to change the number of dimensions ct from Dm to L (the

number of concepts). This process can be expressed as follows:

st = FC(ct ;dim_in = Dm ,dim_out = L); st ∈ RL . (16)

The st , which is obtained through Equation (15) and Equation (16), contains knowledge states
with a one-to-one mapping to the KCs, and thus can predict responses at multiple timesteps in the
future. This capability relies upon the multi-timestep prediction correction module presented in
the next section.

4.4 Multi-timestep Prediction Correction

A student may perform guessing and slipping when answering exercises, that is, the stochastic be-
haviors. The student may give correct responses by guessing answers to the exercises even if the
relevant KCs have not been mastered. To solve this problem, we propose the multi-timestep pre-
diction module based on the assumption that the student’s knowledge state should exhibit steady
and smooth changes during a short period of time (i.e., over multiple subsequent exercises). The
core idea is that we can make use of a student’s current knowledge state to predict the probability
of the student’s responses to exercises over multiple timesteps in the future. We can reduce the
error in the inferences of the knowledge states by adding loss to the upcoming timesteps. To this
end, we first obtain the response probability pt by applying the sigmoid activation layer to st , and
then use it to predict the response-related performance of the student:

pt = Sigmod (st) =
(
pa1t ,p

a2
t , . . . ,p

aL
t

)
; pt ∈ [0, 1]L, (17)

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:13

where pat+1t ∈ [0, 1] is the probability of predicting the student’s response to exercise at+1 at
timestep t + 1. Accordingly, the loss function at timestep t can be defined as the following
cross-entropy:

losst = −
u∑
i=1

β i [rt+i log
(
pat+it

)
+ (1 − rt+i) log

(
1 − pat+it

)
], (18)

where β ∈ (0, 1) represents the coefficient of decay andu denotes the length of the future timesteps
to be predicted. By default, we set these two parameters to 0.5 and 2, respectively.
The multi-timestep prediction correction module can be treated as a form of regularization to

bring about enhanced generalization: Predicting multiple timesteps and calculating the loss in
comparison with the ground truth can regularize the training to prevent overfitting and enable
the model to learn more robust features. As a result, the post-trained model is able to generalize
beyond the immediate interactions to make accurate predictions in situations where the input data
are noisy or incomplete. Based on the virtue, the multi-timestep prediction correction module can
handle the noise introduced by stochastic behaviors, such as guessing and slipping.

4.5 Description of the Algorithm

The pseudo-code of the ELAKT framework is presented in Algorithm 1. Lines 4–6 initialize the
exercise embedding xt and the knowledge embedding yt from an input data point (at , rt). The
one-hot encodings x int and yin

t are first generated by using at and (at , rt), respectively. Then,
a fully-connected layer is used to map the dimensions of x int and yin

t to the input dimensions
of the model Dm to obtain xt and yt . The algorithm uses two methods for aggregating input
knowledge to generate qt , kt , and vt . When aддrmethod is set to one, the algorithm uses causal
convolution (Lines 7—9) to aggregate the input knowledge embeddings by Equation (12), whereas,
when aддrmethod is set to two, the algorithm uses the encoder module (Lines 10—14) to aggregate
the input knowledge embeddings by Equation (13). The hidden knowledge state ht is generated
from qt , kt , and vt via the encoder model (Lines 15—16) by Equation (14), and is further fed into
the causal convolution for aggregation and smoothing by Equation (15) (Line 17). This yields ct .
In Line 18, a fully-connected layer is used to map the dimensions of ct from Dm to L, thus yielding
the state of the KC st by Equation (16). The vector pt , representing the response probabilities of
the KCs, is obtained by using Equation (17) (Line 19). Finally, in Line 20, the loss over multiple
timesteps is computed by using Equation (18). In Line 22, the loss obtained from T timesteps for
each student iterated in Line 3 is summed to obtain the total loss Tn for all interactions of a single
student. Finally, the loss incurred in all interactions by all students is summed up to calculate the
final loss L. The ELAKT model is trained based on this. Lines 4—18 of Algorithm 1 correspond
to the claimed contribution 1 and the contribution 2 for solving the first challenge in AKT. Lines
19—21 of Algorithm 1 correspond to the claimed contribution 3 to solve the second challenge.

5 IMPLEMENTATION AND EXPERIMENTAL RESULTS

5.1 Details of Implementation

We now specify details of the implementation of the ELAKTmodel. The model under the attention
mechanism had 128 dimensions, and the maximum allowed sequence length l was 80. The value
of kernel_size of CausalCov1d in the modules to aggregate input knowledge embeddings, and
to aggregate and smooth hidden knowledge states were set to five by default. There were four
attention heads. We used the Adam optimizer with a learning rate of 0.001. The dropout rate was
set to 0.1 to deal with overfitting and the L2 weight decay was set to 10−6. All the model parameters
were initialized to zero unless otherwise specified. All the experiments were conducted on Tesla
A100 PCIe 40 GB GPUs, with a 2 * Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz, 64 GB DDR4

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:14 Y. Pu et al.

ALGORITHM 1: The Pseudocode of the ELAKT Framework

Input: Student historical response dataset D = {S1, S2, . . . , SN },where Sn = {(a1, r1) , . . . , (aT , rT)},
N : student number, T : length of sequence of student response, L: number of exercises,
aддrmethod ∈ {1, 2}: parameters of the aggregation method

Output :Student response probability set, PD = {PS1
, . . . ,PSN

},where PSn
= {pa2

1
,pa3

2
, . . . ,paT

T
}

1 repeat
2 foreach Sn in D do
3 foreach (at , rt) ∈ Sn do

/* Implement the Aggregation of Input Knowledge Embedding (in
Section 4.2) */

4 xint ← ExerciseEncoding(at) // Exercise Encoding(Equation (9))

5 yint ← KnowledgeEncoding(at , rt) // Knowledge Encoding(Equation (10))

6

xt ← FC(xint)
yt ← FC(yint)

// Convert input encoding to input embedding(Equation (11))

7 if aддrmethod = 1 then
8 qt ← xt
9 kt ,vt ← CausalConv1d(yt−n+1, . . . ,yt) // Aggregation w. causal convolution

(Equation (12))
10 else if aддrmethod = 2 then
11 qt ← xt
12 k

aggr
t ,v

aggr
t ← yt ,yt

13 Qaggr,Kaggr,V aggr ← qt ,k
aggr
t ,v

aggr
t

14 kt ,vt ← Encoder (Qaggr,Kaggr,V aggr) // Aggregation with the encoder
module (Equation (13))

/* Aggregating and Smoothing Hidden Knowledge State (in Section 4.3) */
15 Qin ,Kin ,Vin ← qt ,kt ,vt
16 ht ← Encoder(Qin ,Kin ,Vin) // Generate hidden knowledge state

(Equation (14))
17 ct ← CausalConv1d(ht−e+1, . . . ,ht) // hidden knowledge state aggregation

(Equation (15))
18 st ← FC(ct) // Generate knowledge concept state (Equation (16))

/* Multi-timestep Prediction Correction (in Section 4.4) */

19 pt =
(
pa1t , . . . ,p

aL
t

)
← Sigmod (st) // Calculate probability of response

knowledge concept (Equation (17))

20 pat+1t ,pat+2t , . . . ,pat+ut ← pt // Calculate the response probability for
future exercises

21 losst ← −
∑u
i=1[β

i ∗ crossEntropy(pat+it , rt+i)] // Calculate loss in multiple
timesteps (Equation (18))

22 Tn = ΣTt=1losst

23 L = ΣNn=1Tn
24 update learning variables using Adam optimizer on L
25 until L reaches the convergence condition

RAM, and 1* 256 GB SATA SSD. The software environment was Python 3.9.12, NVIDIA Driver
Version 525.78.01, and PyTorch 1.12.1+cu116.

5.2 Method of Evaluation

5.2.1 Baseline Models and Evaluation Metrics. We compared the proposed ELAKT against sev-
eral baseline KT methods, including DKT, SAKT, AKT, and DKVMN. The prediction task was

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:15

Table 2. Overview of the Experimental Datasets

Dataset Student Concept Interaction Average
length

Length
variance

Maximum
length

ASSISTments09-10 4,151 110 325,637 78 24,293.4 1,261
ASSISTments2015 19,917 100 708,631 35 2,542.6 632
ASSISTments2017 1,709 102 942,816 551 175,529.1 3,057

EdNet1-Sub 10,000 108 2,706,954 271 945,683.0 26,255

considered to be a binary classification problem, that is, the aim was to predict whether an ex-
ercise was answered correctly. We quantified predictive performance by using the AUC. We also
used the accuracy (ACC),mean absolute error (MAE), and root mean-squared error (RMSE)
in the experiments.

— DKT [34]: This model applies the RNN to the KT problem to capture the hidden knowledge
states of each student, and is superior to the BKT. It uses only concepts as inputs.

— DKVMN [48]: It uses key–value memory to track the knowledge state of a student across
latent concepts.

— SAKT [31]: It uses an attention mechanism to determine the importance of previously an-
swered exercises in a sequence to predict the upcoming one.

— AKT [11]: It combines the attention model with Rasch model-based embeddings, in which
the attention weights exponentially decay w.r.t. the distance between exercises in a sequence
to describe a student’s forgetting behavior over a long learning period.

— HawkesKT [42]: It integrates a RNN with IRT-based embeddings, where the network’s hid-
den state weights linearly diminish in relation to the time gap between learning activities,
to characterize a student’s knowledge retention across an extended study duration.

—MAN [17]: It merges memory-augmented neural networks with attention-based neural net-
works in the MAN, where a context-aware attention mechanism dynamically adjusts the
balance between long-term and recent learner knowledge, effectively addressing the “SSP”
in e-learning systems.

5.2.2 Training and Testing. We performed standard k-fold cross-validation (with k = 5) on all
the models and datasets for evaluation. For each fold, 20% of the response records were used as
the test dataset, 20% as the validation set, and 60% as the training set. We truncated sequences of
student responses that were longer than 80 to acquire more pertinent data on the local context.
If a student’s sequence consisted of over 80 exercises, we split it into multiple, shorter sequences.
We used the Adam optimizer to train all models with a batch size of 64 students to balance the
accuracy of training with the speed of convergence.We implemented all the KTmodels in PyTorch.
An epoch of training took less than 10 seconds. We set the maximum number of epochs to 120.

5.3 Datasets

We used of four publicly accessible datasets to evaluate the predictive accuracy of the ELAKT
model against the baseline models. An overview of the datasets is given in Table 2. The first dataset
was provided by the ASSISTments online tutoring platform ASSISTments09-10.1 It contained
325 k responses from 4,151 students when answering exercises involving 110 concepts. The
second dataset was ASSISTments2015,2 which consisted of students’ responses in the 2014–
2015 school year. It contained 708 k non-repeating records that were generated by the at-
tempts of 19,917 students at answering exercises involving 100 concepts. The third dataset was

1https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
2https://sites.google.com/site/assistmentsdata/datasets/2015-assistments-skill-builder-data

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
https://sites.google.com/site/assistmentsdata/datasets/2015-assistments-skill-builder-data

112:16 Y. Pu et al.

Table 3. Comparison of the Experimental Results on four Metrics

Dataset Metric ASSISTments09-10 ASSISTments2015 ASSISTments2017 EdNet-KT1-Sub

DKT

AUC 0.7933 ± 0.0080 0.7048 ± 0.0162 0.7034 ± 0.0013 0.6643 ± 0.0062
ACC 0.7534 ± 0.0086 0.7463 ± 0.0054 0.6868 ± 0.0044 0.6943 ± 0.0055
MAE 0.2466 ± 0.0086 0.2537 ± 0.0054 0.3132 ± 0.0044 0.3057 ± 0.0055
RMSE 0.4965 ± 0.0086 0.5037 ± 0.0054 0.5597 ± 0.0039 0.5528 ± 0.0050

SAKT

AUC 0.8039 ± 0.0198 0.7996 ± 0.0023 0.7150 ± 0.0021 0.7578 ± 0.0048
ACC 0.7582 ± 0.0148 0.7727 ± 0.0046 0.6938 ± 0.0033 0.7280 ± 0.0050
MAE 0.2532 ± 0.0135 0.2273 ± 0.0046 0.3062 ± 0.0033 0.2720 ± 0.0050
RMSE 0.5031 ± 0.0135 0.4786 ± 0.0049 0.5534 ± 0.0030 0.5215 ± 0.0048

AKT

AUC 0.8221 ± 0.0041 0.7312 ± 0.0017 0.7532 ± 0.0030 0.6657 ± 0.0061
ACC 0.7749 ± 0.0044 0.7518 ± 0.0014 0.7065 ± 0.0028 0.6956 ± 0.0058
MAE 0.2217 ± 0.0052 0.2482 ± 0.0014 0.2935 ± 0.0028 0.3044 ± 0.0058
RMSE 0.4709 ± 0.0055 0.4982 ± 0.0014 0.5418 ± 0.0026 0.5517 ± 0.0052

AKT o AUC 0.8346 ± 0.0036 0.7828 ± 0.0019 0.7702 ± 0.0026 N/A

DKVMN

AUC 0.8160 ± 0.0050 0.7045 ± 0.0176 0.6863 ± 0.0030 0.6453 ± 0.0053
ACC 0.7646 ± 0.0059 0.7443 ± 0.0067 0.6808 ± 0.0035 0.6868 ± 0.0058
MAE 0.8160 ± 0.0050 0.2557 ± 0.0067 0.3192 ± 0.0035 0.3132 ± 0.0058
RMSE 0.7647 ± 0.0059 0.5056 ± 0.0067 0.5650 ± 0.0031 0.5596 ± 0.0052

HawkesKT

AUC 0.7397 ± 0.0234

N/A5

0.7036 ± 0.0009 0.8869 ± 0.0089

ACC 0.7157 ± 0.0106 0.6860 ± 0.0009 0.8337 ± 0.0067
MAE 0.2843 ± 0.0106 0.3140 ± 0.0009 0.1663 ± 0.0067
RMSE 0.5331 ± 0.0098 0.5603 ± 0.0008 0.4078 ± 0.0082

MAN6

AUC 0.8160 ± 0.0050 0.7669 ± 0.0093 0.7960 ± 0.0028 0.8123 ± 0.0131
ACC 0.7647 ± 0.0059 0.7511 ± 0.0012 0.7350 ± 0.0040 0.8420 ± 0.0063
MAE 0.2353 ± 0.0059 0.2489 ± 0.0012 0.2650 ± 0.0040 0.2513 ± 0.0063
RMSE 0.4851 ± 0.0061 0.4989 ± 0.0012 0.5147 ± 0.0039 0.4558 ± 0.0057

ELAKT

AUC 0.8775 ± 0.0184 0.9127 ± 0.0020 0.8316 ± 0.0016 0.8965 ± 0.0034

ACC 0.8063 ± 0.0144 0.8487 ± 0.0014 0.7624 ± 0.0035 0.8210 ± 0.0040
MAE 0.1937 ± 0.0144 0.1513 ± 0.0014 0.2376 ± 0.0035 0.1790 ± 0.0040
RMSE 0.4400 ± 0.0167 0.3889 ± 0.0018 0.4875 ± 0.0035 0.4230 ± 0.0047

Improv. AUC 5.14% 14.14% 4.47% 1.08%

The proposed ELAKT model outperformed all the baseline methods in terms of the AUC, ACC, MAE, and RMSE on all

datasets. The best models are shown in bold, and the second-best models are given italics. The row “Improv”. indicates

the relative performance improvement of the best model over the second-best model on the AUC metric.

ASSISTments2017.3 It contained 942,816 responses from 1,709 students and involved 102 concepts.
The fourth dataset was EdNet1-Sub.4 It was a large-scale dataset formulated by the intelligent tu-
toring system Santa. It consisted of four datasets, named KT1, KT2, KT3, and KT4, that involved
different topics. We chose records of interactions of the first 10,000 students in the KT1 dataset
from it. The resulting subset was called EdNet1-Sub. These four datasets have been widely used
to evaluate the performance of the DKT, SAKT, AKT, and other variants of KT methods.

5.4 Predictive Performance

The experimental results of all methods on all the datasets are presented in Table 3. The AUC, ACC,
MAE, and RMSE of all models are presented to evaluate their performance. The ELAKT model

3https://sites.google.com/view/assistmentsdatamining/dataset
4https://github.com/riiid/ednet
5“N/A” is due to the fact that the dataset is not suitable to the method or not prensented in the original paper.
6The experimental results obtained under our reproduction of the code and dataset division.

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

https://sites.google.com/view/assistmentsdatamining/dataset
https://github.com/riiid/ednet

ELAKT 112:17

Fig. 4. Comparisons between ELAKT and the baseline techniques in terms of four metrics on four public

datasets. The best values of the metrics are marked with asterisks (*).

recorded an AUC of 87.96% on the ASSISTments09-10 dataset, which was higher than those of all
the baseline models and constituted an improvement of 5.14% over the best-performing baseline
model. It also attained the highest AUC on the ASSISTments2015, ASSISTments2017, and EdNet-
KT1-Sub datasets, with improvements of 14.14%, 4.47%, and 1.08% compared with the second-best
models, respectively. The row AKT o shows the original results from the relevant study on the
AKT [11]. This baseline was added here because according to a report in the official AKT GitHub
repository, its performance degraded slightly after a bug had been fixed. The ELAKT model also
delivered the best performance on all four datasets in terms of the ACC, MAE, and RMSE. To sum
up, the proposed ELAKT model delivered significantly better performance than state-of-the-art
DNN-based KT models on all four datasets. We also use histograms to represent the performance
of the six models on the four datasets in Figure 4.

5.5 Ablation Study

5.5.1 Experiments on Model Variants. We conducted an ablation study to examine the specific
role of each module in the ELAKT framework. To this end, different variants of ELAKT were
compared to evaluate the effects of aggregating input knowledge embeddings, aggregating hidden
knowledge states, and multi-timestep correction of predictions, respectively, on the performance
of the model. These variants are listed as follows:

— ELAKT-Knowledge Aggregation with Causal Convolution (ELAKT-KACC). This
variant was obtained by replacing the module for aggregating input knowledge embeddings

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:18 Y. Pu et al.

using the encoder with a module for aggregating input knowledge embeddings with causal
convolutions. The purpose was to evaluate the impact of choosing different methods of ag-
gregating input knowledge on the performance of ELAKT.

— ELAKT-KACC-NoHidden (ELAKT-KACCNH) Aggregation. This variant was created by
replacing the encoder module, which aggregates input knowledge embeddings in ELAKT,
with a module that uses causal convolutions for aggregation. Additionally, the module for
aggregating and smoothing hidden knowledge was removed from ELAKT. The objective was
to assess the impact of using different methods for aggregating input knowledge on ELAKT’s
performance, specifically in the absence of the second causal convolution module.

— ELAKT-KACC-NoMultiLoss (ELAKT-KACCNML). This variant was created by replac-
ing the encoder module, which aggregates input knowledge embeddings in ELAKT, with a
module that uses causal convolutions for aggregation. Additionally, the variant model did
not contain multi-timestep prediction correction. The objective was to assess the impact of
using different methods for aggregating input knowledge on ELAKT’s performance, specif-
ically in the absence of the multi-timestep prediction correction module.

— ELAKT-NoAggr (ELAKT-NA). This variant was obtained by removing the module for ag-
gregating input knowledge embeddings from ELAKT. The purpose was to evaluate the im-
pact of aggregating input knowledge on its performance.

— ELAKT-NoHidden (ELAKT-NH) Aggregation. This variant was obtained by removing the
module for aggregating and smoothing hidden knowledge from ELAKT. The purpose was
to evaluate the impact of the second causal convolution module on its performance.

— ELAKT-NoMultiLoss (ELAKT-NML). This variant did not contain multi-timestep predic-
tion correction, and was used to verify the impact of leveraging the loss in predictive accu-
racy over multiple timesteps on the performance of ELAKT.

— ELAKT-NoAggr-NoHiddenAggregation (ELAKT-NANH). This variant was obtained by
removing both the module to aggregate input knowledge embeddings and that to aggregate
and smooth hidden knowledge states from ELAKT. The aim was to evaluate their impact on
its performance.

— ELAKT-NoAggr-NoMultiLoss (ELAKT-NANML). This variant was obtained by remov-
ing both the module to aggregate input knowledge embeddings and that to correct predic-
tions over multiple timesteps from ELAKT. It was used to evaluate their joint impact on
performance.

— ELAKT-NoHiddenAggregation-NoMultiLoss (ELAKT-NHNML). This variant was ob-
tained by removing both the module to aggregate and smooth hidden knowledge states and
that to correct predictions over multiple timesteps from ELAKT. It was used to evaluate their
joint impact on performance.

— ELAKT-NoHiddenAggregation-NoMultiLoss-Knowledge Aggregation With Causal

Convolution (ELAKT-NHNML-KACC). This variant was obtained by removing both the
module to aggregate and smooth hidden knowledge states and that to correct predictions
over multiple timesteps from ELAKT, and by replacing the aggregation of input knowledge
embeddings through an encoder with that based on causal convolutions. This variant is
equivalent to adding knowledge aggregation with causal convolutions to the traditional
SAKT, which is a considerably downgraded version of ELAKT.

— ELAKT-NoAggr-NoHiddenAggregation-NoMultiLoss (ELAKT-NANHNML). This
variant was obtained by removing all modules from ELAKT, which caused it to reduce to
SAKT. This variant was used as a baseline model for comparison with the other variants.

The models of KACC, KAENC, ASHKS, and MPC in Table 4 were “input aggregations of knowl-
edge embeddings with causal convolutions”, “input aggregated knowledge embeddings by using

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:19

Table 4. Results of the Ablation Study

No. Model
Component Dataset

KACC KAENC ASHKS MPC ASSISTments09-10 ASSISTments2015 ASSISTments2017 EdNet-KT1-Sub

1 ELAKT × � � � 0.8629 0.9140 0.8340 0.8931
2 ELAKT-KACC � × � � 0.8055 0.8303 0.7559 0.7880
3 ELAKT-KACCNH � × � × 0.8091 0.8234 0.7398 0.7766
4 ELAKT-KACCNML � × × � 0.8089 0.8199 0.7511 0.7857
5 ELAKT-NA × × � � 0.8098 0.8476 0.7575 0.7831
6 ELAKT-NML × � � × 0.8575 0.9056 0.8273 0.8852

7 ELAKT-NANH × × × � 0.8061 0.8172 0.7383 0.7678
8 ELAKT-NANML × × � × 0.8061 0.8481 0.7447 0.7848
9 ELAKT-NHNML × � × × 0.8364 0.8957 0.7952 0.8825

10 ELAKT-NHNMLKACC � × × × 0.8005 0.8090 0.7304 0.7671

11 ELAKT-NANSNML × × × × 0.7998 0.8060 0.7292 0.7633

The best variants are presented in bold, and the second-best variants are shown in italics.

an encoder”, “aggregating and smoothing hidden knowledge states”, and “multi-timestep predic-
tion correction”, respectively. The four datasets used above were applied again, and the results are
presented in Table 2. Owing to the large scale of the datasets, we selected only the first fold of
the five-fold data for the ablation experiments. The values of kernel_size of the casual convolu-
tion in “aggregating and smoothing hidden knowledge states” and “aggregating input knowledge
embeddings” were both set to five by default. The former is denoted by n and the latter by e (see
Table 1 for recall). We explored the impact of choosing different values of n and e on the predictive
performance of ELAKT and its variants.
The experimental results show that the “KAENC” module had the greatest impact on the predic-

tive performance of the model. The model equipped with this module significantly outperformed
the counterpart model without “KAENC”, especially on the “EdNet-KT1-Sub” dataset (see No. 9 vs.
No. 11). Compared with the baseline model ELAKT-NANSNML (No. 11), the ASHKS, KACC, and
MPC modules each improved the predictive performance of the model, but the gains due to them
were limited (see No. 8, No. 10, and No. 7 compared with No. 11).

When these four modules were combined in pairs, the combination of the “KAENC” module
and the “ASHKS” module yielded the best predictive performance among all variants on all four
datasets (see No. 6 vs. No. 11). The “KACC” module and the “MPC” module also significantly im-
proved the predictions (see No. 2 and No. 7 compared with No. 11). However, the combination of
the “ASHKS” and “MPC”modules led to only moderate improvements in performance (see No. 5 vs.
No. 11). The “KACC” module as well as variants generated by combining the “KACC” with other
modules improved predictions compared with the baseline model (see No. 2 vs. No. 11). However,
the combination of KACC with other modules did not present a significant improvement in pre-
dictive performance, and in some cases, even led to a reduction in efficacy (see No. 2 vs. No. 3 and
No. 4). The KAENC module led to much greater improvement than the KACC module (see No. 1
vs. No. 11). These results can be explained in the following way: When the proposed “KAENC”
module was not used, the knowledge state output at each timestep represented only the student’s
performance on the current exercise rather than their comprehensive knowledge state. The con-
volution of knowledge states between exercises could not be smoothed because these states might
not have been related to one another.

5.5.2 Hyper-Parameter Tuning. In Sections 4.2 and 4.3, we defined the kernel size e for the
causal convolution of the module to aggregate and smooth hidden knowledge states, and the ker-
nel size n for the causal convolution of the module to input aggregated knowledge embeddings
with causal convolutions. These two hyper-parameters should be fine-tuned during the implemen-
tation of the model. A larger e represents a wider range for the aggregation and smoothing of the
knowledge state. We set e to one of {1, 2, 3, 4, 5, 6}. Similarly, a larger n represents a wider range
for the aggregation of contextual knowledge embeddings. We set n to one of {0, 1, 2, 3, 4, 5, 6} to
conduct a grid search for the “optimal” hyper-parameters across models. When n = 0, this implies

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:20 Y. Pu et al.

Table 5. Average AUC Scores on the four Public Datasets, Obtained by using Different

Combinations of e and n

Datasets kernel size (n, e) e = 1 e = 2 e = 3 e = 4 e = 5 e = 6

ASSISTments 09-10

n = 0 0.8480 0.8629 0.8667 0.8664 0.8629 0.8732

n = 1 0.8061 0.8144 0.8155 0.8096 0.8098 0.8134
n = 2 0.8027 0.8097 0.8063 0.8116 0.8130 0.8095
n = 3 0.8032 0.8104 0.8026 0.8056 0.8101 0.8100
n = 4 0.7999 0.8060 0.8040 0.8018 0.8037 0.8062
n = 5 0.7992 0.8095 0.8007 0.8044 0.8055 0.8110
n = 6 0.8005 0.8048 0.8004 0.8084 0.8072 0.8032

ASSISTments 2015

n = 0 0.8989 0.9118 0.9102 0.9100 0.9140 0.9107
n = 1 0.8172 0.8435 0.8294 0.8460 0.8476 0.8459
n = 2 0.8149 0.8342 0.8378 0.8415 0.8434 0.8430
n = 3 0.8163 0.8351 0.8309 0.8399 0.8435 0.8426
n = 4 0.8150 0.8268 0.8324 0.8334 0.8372 0.8356
n = 5 0.8238 0.8317 0.8274 0.8341 0.8303 0.8299
n = 6 0.8147 0.8231 0.8323 0.8301 0.8339 0.8348

ASSISTments 2017

n = 0 0.8076 0.8227 0.8306 0.8328 0.8338 0.8356

n = 1 0.7383 0.7503 0.7547 0.7496 0.7575 0.7548
n = 2 0.7440 0.7537 0.7538 0.7646 0.7420 0.7496
n = 3 0.7464 0.7487 0.7490 0.7590 0.7560 0.7543
n = 4 0.7469 0.7592 0.7561 0.7565 0.7601 0.7564
n = 5 0.7373 0.7547 0.7632 0.7503 0.7559 0.7579
n = 6 0.7385 0.7498 0.7580 0.7596 0.7600 0.7575

EdNet1-Sub

n = 0 0.8814 0.8889 0.8901 0.8929 0.8931 0.8952

n = 1 0.7678 0.7773 0.7897 0.7804 0.7831 0.7817
n = 2 0.7753 0.7790 0.7872 0.7811 0.7861 0.7832
n = 3 0.7722 0.7806 0.7821 0.7854 0.7870 0.7868
n = 4 0.7744 0.7877 0.7901 0.7842 0.7861 0.7956

n = 5 0.7751 0.7842 0.7875 0.7900 0.7880 0.7893
n = 6 0.7760 0.7831 0.7849 0.7883 0.7897 0.7909

The combinations of hyper-parameters (n, e) with the best AUC with are given in bold, and those with the

second-best are given in italics.

that the ELAKTmodel utilizes the “KAENC”module for aggregating input knowledge embeddings,
while n � 0 means that the model uses the “KACC” module to this end. The “multi-timestep predic-
tion correction” module was used in all experiments to tune the hyper-parameters. Table 5 shows
the experimental results in terms of the AUC scores, which show that increasing the value of e
enhanced the predictive performance of the ELAKT model.
Whenn = 0, increasing the hyper-parameter e led to a significant improvement in the predictive

performance of the model on the ASSISTments09-10 dataset. The increase in n led to almost no
improvement in its performance on ASSISTments09-10. Moreover, increasing e when n � 0 led to
only minor enhancements in performance.
The results on the ASSISTments 2015 dataset indicate that increasing the value of e enhanced the

model’s predictive performance. However, while small increases inn yielded aminor improvement
in performance, further increases tended to reduce the model’s predictive capacity. Excessively
large values of n even negatively impacted the effectiveness of e in boosting performance. In most
experiments on e , the model achieved its optimal predictive performance when e was set to five.

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:21

Fig. 5. Visualizing the knowledge embeddings derived from the response sequences of three students

through SAKT and ELAKT from ASSISTments09-10. The aggregated knowledge embeddings employed by

the ELAKT remained stable relative to the extreme changes in the knowledge embeddings used by SAKT.

The experimental results on both the ASSISTments 2017 dataset and the EdNet-KT1-Sub dataset
showed similar trends to the above, whereby increases in the hyper-parameters e and n improved
the predictive performance of the model. When {n = 2, e = 4} and {n = 4, e = 6}, the variants
using the “KACC” module achieve optimal predictive performance on the ASSISTments 2017 and
the EdNet-KT1-Sub datasets, respectively.
The results of the experiments on tuning the hyper-parameters can be summarized as follows:

— Reasonable values of the hyper-parameter e significantly enhanced the model’s predictive
performance while excessively large values reduced it. This can be attributed to the fact
that over-smoothing the knowledge state introduces irrelevant concept states, potentially
leading to the use of incorrect concept states when predicting the student’s response.

— Although both the “KAENC” and “KACC” modules can be used to aggregate input knowl-
edge embeddings in the ELAKT model, the predictive performance of the model is signifi-
cantly better when using the “KAENC”module. This can be attributed to its higher flexibility
of aggregation and the accuracy of the attention mechanism. The causal convolution is in-
capable of this because it requires a convolution of a fixed size.

6 VISUALIZATION

6.1 Visualizing Aggregation of Input Knowledge Embeddings

To evaluate the effectiveness of the process of aggregating the input knowledge embeddings, we
visualized vectors of the knowledge embeddings of both SAKT and ELAKT. The steps are as
follows:

(1) Calculate the L2-norm of each row of the knowledge embedding Kaggr ∈ RT ∗Dm (T is the
length of the sequence, defined in Algorithm 1, and Dm is the number of dimensions of
embeddings of the model) to generate a vector in RT for both SAKT and ELAKT;

(2) Normalize the elements in the vector to a range between zero and one;
(3) Visualize the normalized vector by using a heatmap.

The first 50 elements (i.e., timesteps or exercise items) in the normalized vectors as well as the
index of concepts and the answers (results) for both SAKT and ELAKT are presented in Figure 5.
The top row of each heatmap in Figure 5 displays the sequence of the student’s answers: The

light-green color represents a correct answer while purple represents an incorrect one. The second
and third rows present the L2-norm of the knowledge embeddings in the SAKT model and the

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:22 Y. Pu et al.

aggregated knowledge embeddings in the ELAKT models, respectively, with the intensity of the
colors indicating the value of the normalized L2-norm. The fourth row shows the index of concepts
associated with the given exercise at the given timestep (in the fifth row). In all experiments, the
length of the sequence T of the model was set to 80, with zero padding applied to incomplete
sequences. Due to the difficulty of visualizing long sequences, only the first 50 exercise items are
displayed here.
Figure 5 shows that the SAKT model underwent fluctuations in the L2-norm of knowledge em-

beddings. It jumped from the maximum to the minimum value, simply because of the occasional
correct or incorrect answer (see red box, Nos. 1–5). When a student consistently answered ex-
ercises incorrectly, the overall L2-norm of the knowledge embedding even approached zero (see
red box, Nos. 6–7). By contrast, the L2-norm of the aggregated knowledge embeddings generated
by the ELAKT model was smooth, with few extreme changes. Even if a student answered mul-
tiple exercises incorrectly, the aggregated knowledge embedding remained stable. This suggests
that module to aggregate input knowledge embeddings was effective in consolidating contextual
knowledge embeddings and obtaining comprehensive ones. This feature is consistent with the
fact that a student’s knowledge state should not change drastically over a short time, even though
abnormal behaviors may occasionally occur.

6.2 Visualizing Attention Weights

To evaluate the impact of aggregated knowledge embeddings on the encoder module detailed in
Section 4.3, we randomly selected a student, and visualized its attentionweights inhead2 andhead4
(the default value of the number of attention heads was four) in both the SAKT and the ELAKT
models based on data from the ASSISTments09-10 dataset.
Figures 6(a) and 6(b) present the results of visualization of attention obtained by the ELAKT

model, while Figures 6(c) and 6(d) show those of the SAKT model. Figure 6 shows that the atten-
tion weights of the SAKT model significantly fluctuated. While a few points had high attention
values, most timesteps had low attention values. By contrast, the attention weights of the ELAKT
model were smoother. Its pattern of attention weights was a more appropriate representation of
the student’s comprehensive knowledge state, and it could make local adjustments based on the
actual knowledge embedding at each timestep.

6.3 Visualizing the State of the Full Knowledge Concept for Prediction

To verify the capability of ELAKT to trace the states of the KCs, we present a visualization in
Figure 7. In Section 4.3, we use a mapping of KCs to transform the student’s hidden knowledge
state ct into the comprehensive state of KCs st . And then, the pt ∈ [0, 1]L , which was obtained by
passing st through the sigmoid activation function, can be interpreted as the response probability
at timestep t for all KCs. The figure illustrates the evolution of pt for a student in the first batch of
the ASSISTments09-10 dataset over a course of 20 timesteps. During these 20 timesteps, five KCs
were used, with indices of 8 (pentagon), 9 (rhombus), 10 (triangle), 55 (square), and 87 (circle).

The first two rows in Figure 7 represent the student’s actual responses (i.e., the ground-truth
response) at each timestep, and the predicted responses made by the model based on the current
state of the student’s KCs (see green box), respectively. In the first two rows, the shape with a
rectangular border means an incorrect response and the shape without a border means a correct
response. When both the shapes at the same time step are with a boarder or without a boarder,
concurrently, this indicates a successful prediction. Difference in terms of the boarder indicates a
failure in prediction. The shapes represent different KCs.
The five rows within the blue box illustrate the evolution of the response probabilities with

respect to the five KCs over time. The depth of the grayscale blocks was determined by the

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:23

Fig. 6. The self-attention-based visualizations of both SAKT and ELAKT in the module to aggregate and

smooth hidden knowledge states on the ASSISTments 09-10 dataset.

normalized 0–1 value (darker blocks represent higher probabilities of the student correctly answer-
ing the exercises involving a certain KC). Again, different shapes embedded in the block represent
different KCs, and their colors indicate the predicted outcomes for an exercise involving the respec-
tive KC. If the value of the state of the KC exceeded 0.5, the embedded shape was colored,indicating
that the model will predict the student to answer the exercise correctly; if the value was below 0.5,
the embedded shape was black, and reflected an incorrect response.
We define the failure of the prediction as a discrepancy between the predicted response based

on the knowledge state and the actual response (ground truth). The prediction for “concept 8”
was correct once and failed once in the first two timesteps. When the response was incorrect in
the first timestep, the corresponding state of the KC decreased (block with a light grey; see red
box No. 1). When the follow-up response to the exercise involving “concept 8” was correct (in
time step 2), the state of the corresponding KC increased in the third timestep. From the third
to the seventh timesteps, the predictions for exercises involving “concept 9” were consistently
successful (The colors of “Prediction result” and “Ground truth” match perfectly from the third to

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

112:24 Y. Pu et al.

Fig. 7. Visualizing the tracing of the state of the KCs of a student in ASSISTments09-10. In the first two rows,

the shape with a rectangular border means an incorrect response and the shape without a border means a

correct response. Three failure in predictions occur at the timestep 3, 17, and 20.

the seventh timesteps). Predictions for exercises, involving concepts 10 and 55, respectively, were
also successful. Two failed predictions were obtained for “concept 87”. Nonetheless, the state of
the corresponding KC decreased (see red box No. 2) when the student’s response was incorrect.
It is demonstrated that one or two incorrect responses did not have a significant impact on the
comprehensive state of the KC used by the ELAKT. There were three failed predictions out of the
total 20 predictions, giving an accuracy of 85%.

7 CONCLUSIONS AND FUTURE WORK

In this article, we addressed two main limitations in KT methods: the difficulty of capturing a
comprehensive knowledge state at each timestep, and the lack of consideration of stochastic be-
haviors, such as students’ slipping and guessing behaviors. To address these issues, we developed a
KT model, called ELAKT, based on the framework of the self-attentive transformer. The proposed
model can trace the knowledge states of students at each timestep while predicting their perfor-
mance on the upcoming exercises. It uses an encoder module to aggregate knowledge embeddings,
and further aggregates and smooths hidden knowledge states by using causal convolutions. The
results of experiments on four real-world datasets demonstrated that the ELAKT model achieves
state-of-the-art predictive performance, while those of ablation studies validated the impact of
each of the three proposed modules on the overall performance. The combination of the com-
prehensive tracing of KCs and the predictive power of the ELAKT model can help design better
intelligent tutoring applications. Acquiring a comprehensive knowledge state enables more exten-
sive and holistic prediction of student responses in future assessments, because it involves the
consideration of historical exercise-response pairs of a student and the complete set of KCs. This
comprehensive quantity can help significantly enhance personalized learning resource recommen-
dations. In future work, we plan to enhance the textual interpretability of the ELAKT model by
using large language models, such as ChatGPT, for pre-processing the dataset to obtain more ac-
curate KC–exercise relationships as well as representative text labels for the KCs.

ACKNOWLEDGMENTS

The authors are affiliated with both Beihang University and Zhongguancun Laboratory, which
contributed equally to this work.

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

ELAKT 112:25

REFERENCES

[1] Ghodai Abdelrahman and Qing Wang. 2019. Knowledge tracing with sequential key-value memory networks. In

Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.

175–184.

[2] Ghodai Abdelrahman and Qing Wang. 2022. Deep graph memory networks for forgetting-robust knowledge tracing.

IEEE Transactions on Knowledge and Data Engineering 35, 8 (2022), 7844–7855.

[3] Ghodai Abdelrahman, Qing Wang, and Bernardo Pereira Nunes. 2022. Knowledge tracing: A survey. ACM Computing

Surveys 55, 11, (2022), 1–37.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization. arXiv:1607.06450 . Retrieved from

https://arxiv.org/abs/1607.06450

[5] Alan D. Baddeley and Graham Hitch. 1993. The recency effect: Implicit learning with explicit retrieval? Memory &

Cognition 21, 2 (1993), 146–155.

[6] Jiayi Chen, WenWu, and Liang He. 2022. C3SASR: Cheap causal convolutions for self-attentive sequential recommen-

dation. arXiv:2211.01297 . Retrieved from https://arxiv.org/abs/2211.01297

[7] Penghe Chen, Yu Lu, Vincent W. Zheng, and Yang Pian. 2018. Prerequisite-driven deep knowledge tracing. In Proceed-

ings of the 2018 IEEE International Conference on Data Mining. IEEE, 39–48.

[8] Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Byungsoo Kim, Yeongmin Cha, Dongmin Shin, Chan

Bae, and Jaewe Heo. 2020. Towards an appropriate query, key, and value computation for knowledge tracing. In

Proceedings of the 7th ACM Conference on Learning@ Scale. 341–344.

[9] Albert T. Corbett and John R. Anderson. 1994. Knowledge tracing: Modeling the acquisition of procedural knowledge.

User Modeling and User-adapted Interaction 4, 4 (1994), 253–278.

[10] Jiajun Cui, Zeyuan Chen, Aimin Zhou, Jianyong Wang, and Wei Zhang. 2023. Fine-grained interaction modeling

with multi-relational transformer for knowledge tracing. ACM Transactions on Information Systems 41, 4 (2023),

1–26.

[11] Aritra Ghosh, Neil Heffernan, and Andrew S. Lan. 2020. Context-aware attentive knowledge tracing. In Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2330–2339.

[12] José González-Brenes, Yun Huang, and Peter Brusilovsky. 2014. General features in knowledge tracing to model multi-

ple subskills, temporal item response theory, and expert knowledge. In Proceedings of the 7th International Conference

on Educational Data Mining. University of Pittsburgh, 84–91.

[13] José P. González-Brenes and Jack Mostow. 2012. Dynamic cognitive tracing: Towards unified discovery of student and

cognitive models. International Educational Data Mining Society (2012).

[14] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines. arXiv:1410.5401 . Retrieved from https:

//arxiv.org/abs/1410.5401

[15] Rebeen Ali Hamad, Masashi Kimura, Longzhi Yang, Wai Lok Woo, and Bo Wei. 2021. Dilated causal convolution with

multi-head self attention for sensor human activity recognition. Neural Computing and Applications 33, 20 (2021),

13705–13722.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

[17] Liangliang He, Xiao Li, Pancheng Wang, Jintao Tang, and Ting Wang. 2023. MAN: Memory-augmented atten-

tive networks for deep learning-based knowledge tracing. ACM Transactions on Information Systems 42, 1 (2023),

1–22.

[18] Liangliang He, Jintao Tang, Xiao Li, Pancheng Wang, Feng Chen, and Ting Wang. 2022. Multi-type factors represen-

tation learning for deep learning-based knowledge tracing. World Wide Web 25, 3 (2022), 1343–1372.

[19] Zhankui He, Handong Zhao, Zhe Lin, Zhaowen Wang, Ajinkya Kale, and Julian McAuley. 2021. Locker: Locally con-

strained self-attentive sequential recommendation. In Proceedings of the 30th ACM International Conference on Infor-

mation & Knowledge Management. 3088–3092.

[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–1780.

[21] Mohammad Khajah, Robert V. Lindsey, andMichael C. Mozer. 2016. How deep is knowledge tracing? arXiv:1604.02416

. Retrieved from https://arxiv.org/abs/1604.02416

[22] M. Khajah, R. V. Lindsey, and M. C. Mozer. 2016. How deep is knowledge tracing? Proceedings of EDM (2016), 94–101.

[23] Kenneth R. Koedinger, John C. Stamper, Elizabeth A. McLaughlin, and Tristan Nixon. 2013. Using data-driven discov-

ery of better student models to improve student learning. In Proceedings of the International Conference on Artificial

Intelligence in Education. Springer, 421–430.

[24] Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown, and Boqing Gong. 2021.

Movinets: Mobile video networks for efficient video recognition. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition. 16020–16030.

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2211.01297
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1604.02416

112:26 Y. Pu et al.

[25] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. 2019. Enhancing

the locality and breaking the memory bottleneck of transformer on time series forecasting. Proceedings of Advances

in Neural Information Processing Systems (2019), 1598–1607.

[26] Yanan Li, Haitao Yuan, Zhe Fu, Xiao Ma, Mengwei Xu, and Shangguang Wang. 2023. ELASTIC: Edge workload

forecasting based on collaborative cloud-edge deep learning. In Proceedings of the ACM Web Conference 2023. ACM,

3056–3066.

[27] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. 2022. A survey of transformers. AI Open (2022).

[28] Congjie Liu and Xiaoguang Li. 2021. Multi-factor memory attentive model for knowledge tracing. In Proceedings of

the Asian Conference on Machine Learning. PMLR, 856–869.

[29] Larry R. Medsker and LC Jain. 2001. Recurrent neural networks. Design and Applications 5 (2001), 64–67.

[30] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,

Andrew Senior, and Koray Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv:1609.03499 . Re-

trieved from https://arxiv.org/abs/1609.03499

[31] Shalini Pandey and George Karypis. 2019. A self-attentive model for knowledge tracing. arXiv:1907.06837 . Retrieved

from https://arxiv.org/abs/1907.06837

[32] Shalini Pandey and Jaideep Srivastava. 2020. RKT: Relation-aware self-attention for knowledge tracing. In Proceedings

of the 29th ACM International Conference on Information & Knowledge Management. 1205–1214.

[33] Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A decomposable attention model for

natural language inference. arXiv:1606.01933 . Retrieved from https://arxiv.org/abs/1606.01993

[34] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas, and Jascha Sohl-

Dickstein. 2015. Deep knowledge tracing. In Proceedings of the Advances in Neural Information Processing Systems.

505–513.

[35] Dongmin Shin, Yugeun Shim, Hangyeol Yu, Seewoo Lee, Byungsoo Kim, and Youngduck Choi. 2021. Saint+: Inte-

grating temporal features for ednet correctness prediction. In Proceedings of the LAK21: 11th International Learning

Analytics and Knowledge Conference. 490–496.

[36] John C. Stamper and Kenneth R. Koedinger. 2011. Human-machine student model discovery and improvement using

datashop. In Proceedings of the Artificial Intelligence in Education - 15th International Conference, AIED 2011, Auckland,

New Zealand, June 28 - July 2011.

[37] Jianwen Sun, Rui Zou, Ruxia Liang, Lu Gao, Sannyuya Liu, Qing Li, Kai Zhang, and Lulu Jiang. 2022. Ensem-

ble knowledge tracing: Modeling interactions in learning process. Expert Systems with Applications 32 (2022),

1–12.

[38] Kikumi K. Tatsuoka. 1983. Rule space: An approach for dealing with misconceptions based on item response theory.

Journal of Educational Measurement 20, 4 (1983), 345–354.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems.

5998–6008.

[40] George C. Velmahos, Konstantinos G. Toutouzas, Lelan F. Sillin, Linda Chan, Richard E. Clark, Demetrios Theodorou,

and Fredric Maupin. 2004. Cognitive task analysis for teaching technical skills in an inanimate surgical skills labora-

tory. American Journal of Surgery 187, 1 (2004), 114–119.

[41] Bandhav Veluri, Justin Chan,Malek Itani, Tuochao Chen, Takuya Yoshioka, and Shyamnath Gollakota. 2022. Real-time

target sound extraction. arXiv:2211.02250 . Retrieved from https://arxiv.org/abs/2211.02250

[42] Chenyang Wang, Weizhi Ma, Min Zhang, Chuancheng Lv, Fengyuan Wan, Huijie Lin, Taoran Tang, Yiqun Liu, and

Shaoping Ma. 2021. Temporal cross-effects in knowledge tracing. In Proceedings of the 14th ACM International Confer-

ence on Web Search and Data Mining. 517–525.

[43] Chun-Kit Yeung and Dit-Yan Yeung. 2018. Addressing two problems in deep knowledge tracing via prediction-

consistent regularization. In Proceedings of the 5th Annual ACM Conference on Learning at Scale. 1–10.

[44] Haitao Yuan and Guoliang Li. 2021. A survey of traffic prediction: from spatio-temporal data to intelligent transporta-

tion. Data Science and Engineering 6, 1 (2021), 63–85.

[45] Haitao Yuan, Guoliang Li, and Zhifeng Bao. 2022. Route travel time estimation on a road network revisited: Hetero-

geneity, proximity, periodicity and dynamicity. Proceedings of the VLDB Endowment 16, 3 (2022), 393–405.

[46] Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2020. Effective travel time estimation: When historical trajec-

tories over road networks matter. In Proceedings of the 2020 International Conference on Management of Data. ACM,

2135–2149.

[47] Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2021. An effective joint prediction model for travel demands

and traffic flows. In Proceedings of the 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania,

Greece, April 19-22, 2021. IEEE, 348–359.

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1907.06837
https://arxiv.org/abs/1606.01993
https://arxiv.org/abs/2211.02250

ELAKT 112:27

[48] Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. 2017. Dynamic key-value memory networks for knowledge

tracing. In Proceedings of the 26th International Conference on World Wide Web. 765–774.

[49] Yan Zhao, DeLiang Wang, Buye Xu, and Tao Zhang. 2020. Monaural speech dereverberation using temporal convo-

lutional networks with self attention. IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020),

1598–1607.

Received 7 June 2023; revised 3 January 2024; accepted 6 March 2024

ACM Trans. Inf. Syst., Vol. 42, No. 4, Article 112. Publication date: April 2024.

