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Embedding cognitive framework 
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Pu Feng1

Recently, deep neural network‑based cognitive models such as deep knowledge tracing have been 
introduced into the field of learning analytics and educational data mining. Despite an accurate 
predictive performance of such models, it is challenging to interpret their behaviors and obtain an 
intuitive insight into latent student learning status. To address these challenges, this paper proposes 
a new learner modeling framework named the EAKT, which embeds a structured cognitive model 
into a transformer. In this way, the EAKT not only can achieve an excellent prediction result of 
learning outcome but also can depict students’ knowledge state on a multi‑dimensional knowledge 
component(KC) level. By performing the fine‑grained analysis of the student learning process, the 
proposed framework provides better explanatory learner models for designing and implementing 
intelligent tutoring systems. The proposed EAKT is verified by experiments. The performance 
experiments show that the EAKT can better predict the future performance of student learning(more 
than 2.6% higher than the baseline method on two of three real‑world datasets). The interpretability 
experiments demonstrate that the student knowledge state obtained by EAKT is closer to ground 
truth than other models, which means EAKT can more accurately trace changes in the students’ 
knowledge state.

Over the past decade, the Intelligent tutoring system (ITS) has become increasingly important in online educa-
tion because it can offer a personalized and adaptive learning experience for a large scale of students. The core 
component of the ITS is a cognitive learner model, which can infer the latent knowledge state of individual 
students so that other components can provide personalized guidance for improving their learning  efficiency1–3. 
In recent years, many knowledge tracing models have been developed, and they can be roughly divided into 
structured knowledge tracing models and deep knowledge tracing  models4. A Knowledge Tracing(KT) task can 
be regarded as a supervised sequence learning problem. For instance, for a given sequence of a student’s histori-
cal exercise interactions Xt = ( x1 , x2,......,xt ), the KT model can predict the probability of answering correctly 
in the next interaction p(rt+1 = 1|qt+1,X) and infer a student’s knowledge state in each interaction. Input xt is 
usually represented as a tuple ( qt , at ), where qt represents the question that a student encounters in timestamp 
t, and at indicates whether the answer of qt is correct or not. Structured knowledge tracing methods, such as 
Bayesian knowledge tracing (BKT)5, define their parameters and variables based on the principles of cognitive and 
education science. Therefore, it is simple to interpret their predictive results to instructors when they are used 
to assess a student’s learning performance. Traditional structured models have certain limitations in modeling 
multi-dimensional knowledge states because they typically assume that every item qt is designed around a sin-
gle knowledge concept. However, an item qt involves multiple skill requirements, which can be formulated as a 
Q-matrix6, which is a sparse matrix for measurement of cognitive mastery. As an extension of BKT, an Automatic 
Temporal Cognitive (ATC) method integrates the Q-matrix into a nonlinear state-space model to trace multi-
dimensional student knowledge states  accurately7.

Recently, deep neural network-based cognitive learner models have been proposed to solve the KT tasks, such 
as Deep Knowledge Tracing (DKT)8, Dynamic Key-Value Memory Network (DKVMN)9, Exercise-aware Knowledge 
Tracing (EKT)10, and Deep-IRT11. These models adopt different DNN frameworks to realize knowledge tracing, 
and compared to structured models, they can achieve better prediction performance. However, deep neural 
networks are often deemed as black-box models whose complex inner representations are difficult to associate 
with an explicit description of latent skill states and their relations in the Q-matrix form. The DKT dismisses 
information about concepts and abstracts the students’ ability as a hidden vector, resulting in the invisibility of 
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students’ cognitive structure. In addition, a number of deep learning-based learner models, such as DKVMN 
and EKT, assume that each question is related only to one skill without considering the difficulty coefficient of 
questions. Researchers have attempted to apply the IRT model to the KT tasks and combined it with the DKVMN 
to develop a deep-IRT model, assigning neural network parameters with psychological significance. However, 
a simple IRT model cannot accurately describe the knowledge requirements of exercises in complex multi-skill 
learning  scenarios12. Although the Deep-IRT adds difficulty attributes to every Knowledge Component(KC), it 
still follows the assumption of a single KC for each question.

Although structured knowledge tracing models have explainable parameters based on cognitive science 
theories, they show certain difficulties in handling complex model structures and datasets. In contrast, deep 
knowledge-based tracing models can achieve good predictive performance, but their encoding of the cognitive 
state is very hard to interpret in the context of intelligent tutoring. To address this challenge, this study pro-
poses the EAKT model by incorporating the cognitive structure of a structured ATC model into a DNN-based 
knowledge tracing framework. In this way, the predictive power of the DNN-based knowledge tracing models 
is combined with the strength of structured models to generate an interpretable knowledge state.

The major contributions of this paper can be summarized as follows: 

1. A structured cognitive model is used to constrain a DNN-based knowledge tracing framework so that the 
model parameters can be assigned with explainable meanings while guaranteeing the predictive performance;

2. A Q-matrix is introduced to describe the fine-grained relationship between knowledge components and 
every question. The EAKT represents the multi-dimensional KC vector as a student’s knowledge state and 
the Q-matrix as a skill requirement for every question.

The rest of this paper is organized as follows. The related work on the Q-matrix discovery method and KT task, 
including Bayesian KT models and deep learning-based KT models are discussed in “Related work” section. 
Section “Proposed model” describes the structure of the EAKT model in detail. In “Implementation and experi-
mental results” section, we presents the implementation details,experimental results and compares the EAKT’s 
performance with that of the state-of-art deep knowledge tracing models. Last section concludes this work and 
presents future work directions.

Related work
Structured knowledge tracing model. The BKT model tracks students’ knowledge states over time 
using the Hidden Markov Model (HMM). However, it can track only students’ mastery of a single cognitive 
skill without specifying the difficulty of learning items. Recent research efforts on the BKT have focused on the 
multiple-subskill extension of the BKT.  Brenes13 proposed Dynamic Cognitive Tracing to construct a cognitive 
model and a student model of longitudinal student data. In his later work, he introduced the Feature-Aware 
Student Knowledge Tracing (FAST)14 to different incorporate skill features such as subskills and used problem’s 
difficulty and student ability as parameters of the KT model. All these feature-based extensions of the BKT 
strongly rely on experts’ knowledge when predefining the skill and subskill features without using any automatic 
Q-matrix discovery method. The Automatic Temporal Cognitive Model (ATC) represents an evolution of the 
Cognitive Diagnosis Model(CDM) and the KT Model. It aims to incorporate the multi-dimensional knowledge 
state and temporal changes, including skill enhancement and forgetting factors. In the ATC model, a nonlinear 
state-space framework is used to encode multi-dimensional KC levels and Q-matrix of learning items. The ATC 
model is also capable of deriving the detailed values of the Q-matrix from student learning trajectories in a data-
driven approach. Therefore, the ATC model could be an ideal candidate for governing deep neural networks for 
knowledge tracing and improving their interpretability.

DNN‑based knowledge tracing models. DKT and its extensions. Deep knowledge tracing (DKT) uses 
Recurrent Neural Networks (RNNs) to model student learning and achieves impressive predictive advantages 
without the need for human-engineered features, such as recency effect and contextualized trial sequence. How-
ever, latent encoding of the knowledge state in the DKT cannot consistently depict students’ mastery of KCs and 
predict temporal changes in knowledge state across time. Aiming to the DKT’s major problems in KC modeling, 
the DKT+ introduces regularization terms, which correspond to the reconstruction and waviness, to the loss 
function of the original DKT model to enhance the consistency in prediction. Experiments have shown that the 
regularized loss function can effectively alleviate the two problems without degrading the original task of  DKT15. 
 Chen16 aimed to address the data sparse problem by incorporating the prerequisite concept pairs as constraints 
in the DKT model, thus improving the prediction performance of students’ concept mastery and offering a 
partial interpretation of predictive results. However, despite these advantages, hidden state variables of a neural 
network cannot explicitly represent explainable educational meanings without inducing prior cognitive struc-
ture and constraints. As a result, how to characterize changes in the students’ knowledge state accurately using a 
deep neural network has still been a challenge.

Deep knowledge tracing with attention mechanism. Attention  mechanism17 has been shown to be effective in 
tasks involving sequence modeling. The idea behind this mechanism is to focus on relevant elements of the input 
signals when predicting the output. The self-attentive knowledge tracing (SAKT)18 has been the first method to 
adopt attention mechanisms in the context of KT. Attention mechanisms are more flexible than recurrent and 
memory-based neural networks. Extensive experiments on a variety of real-world datasets suggest that the SAKT 
model can outperform the state-of-the-art methods and is one order of magnitude faster than the RNN-based 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17536  | https://doi.org/10.1038/s41598-022-22539-9

www.nature.com/scientificreports/

approaches. Ghosh et al.19 presented a context-aware attentive knowledge tracing (AKT) model, incorporating 
the self-attention mechanism with cognitive and psychometric models. They defined context-aware representa-
tions of questions and responses using a monotonic attention mechanism to summarize every learner’s histori-
cal performance in the right time scale. They used the Rasch model to capture individual differences between 
questions covering the same concept. However, none of the existing methods have quantitatively analyzed the 
interpretability of students’ knowledge state.

Despite of the recent progress in the research of knowledge tracing, most modeling frameworks haven’t pre-
sented an interpretable mult-dimension knowledge tracing solution. Table 1 summarizes the status of the past 
major proposals in the research community.

Proposed model
In this section, the EAKT model, which is developed based on the attentive knowledge tracing model and the skill 
encoding and prediction methods of the ATC model, is presented. First, the ATC model and cognitive diagnosis 
models for Q-matrix are briefly introduced, and then the EAKT model is described in detail.

ATC model. The ATC framework can be described as two parts: the first part is the probability of students 
answering the exercises correctly, in which the students’ knowledge state and exercise KC are both represented 
as multi-dimensional vectors. The second part depicts the dynamic changes of students’ knowledge states by 
Eq. (2). The specific calculation process of Eq. (1) is as follows. First, calculate the projection length of the stu-
dent’s knowledge state θ st on the exercise KC ai and make a difference with the norm of exercise KC, then use 
the logistic function to normalize the difference qsit between 0 and 1 as the probability of student s correctly 
answering the exercise i.

• ai represents the required KC vector of an exercise i;
• θst represents the knowledge state vector of a student s at time t;
• Rsit is the response of a student s on a exercise i at time t;
• psit is the probability of a student s giving a correct response on an exercise i at time t.

An exercise is represented as ai = (ai1, ai2, . . . , aik , . . . , aiM) , where aik represents a latent KC of a Q-matrix 
QMN . Traditionally, an element aik is defined as a binary value determining whether a knowledge component 
KCk associates with an exercise ai or  not20. In the ATC model, the binary Q-matrix is extended to a new matrix 
with real numbers to indicate the degree of correlation between exercises and all KCs.

Equation (2) assumes that a student’s knowledge state at a time step (t + 1) follows the Gaussian distribution 
with the mean µs(t+1),n , which depends on the temporal change in θst,n in the previous time step. Such a state 
transition represents an interplay between knowledge acquisition and exponential forgetting between the two 
states. Equation (3) defines a nonlinear transformation function to formulate the state transition in the learning 
process over the exercise-answering sequence.

• θst,n indicated the ability of the nth skill in the dimension of θst;
• li,n denotes the value of the nth dimension of a vector li;

(1)
qsit =

θst · ai
�ai�

− �ai�

psit = Pr(Rsit = 1|θst , li , ai) = φ(qsit)

(2)θs(t+1),n ∼ N
(
µs(t+1),n′σ

2
)

(3)
µs(t+1),n =

(
θst,n + li,n ∗ φ

(
qsit

))
∗ fst,n

fst,n = exp

{
−
[

1

1+ θst,n
∗ r + β

]
∗�t

}

Table 1.  Comparison of the BKT, CDM, ATC,DKT/SAKT, DKVMN/Deep-IRT, AKT, EAKT frameworks.

Multi-dimension skill in 
KC level

Temporal knowledge state 
tracing

Processing power for large 
datasets

Explainability of 
Knowledge state

BKT No Yes No Yes

CDM Yes No No Yes

ATC Yes Yes No Yes

DKT/SAKT No Yes Yes No

DKVMN/Deep-IRT No Yes Yes Yes

AKT No Yes Yes Yes

EAKT Yes Yes Yes Yes



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17536  | https://doi.org/10.1038/s41598-022-22539-9

www.nature.com/scientificreports/

• r and β are fitting parameters;
• fst,n is the forgetting coefficient of a student s from time t to time (t + 1);
• �t is the interval between time t and time (t + 1).

Cognitive diagnosis models for Q‑matrix. The input to the EAKT model requires a Q-matrix, and 
there are two ways to discover the Q-matrix. In addition to the ATC model described above, the non-negative 
matrix factorization (NMF) models have been proposed to discover the Q-matrix. These factorization tech-
niques can implicitly encode the “slip” and “guess” factors, which means “learner effect” and the “task effect”. It 
divides a large unit into small sections, which are further divided into small problems, and, finally, into small 
steps, so that tasks can be described as specific skills required to solve the problem. NMF method approximates 
a matrix X by the product of two smaller matrices W and H, where X ≈ WHT , and W ∈ RU×K is a matrix where 
each row u is a vector containing the K latent factors describing the learner u and H ∈ RI×K is a matrix where 
each row i is a vector containing K factors describing task i. Let wuk and hik be the elements of W and H, respec-
tively; then, the performance p of a learner u on a task i is predicted by:

Although both the ATC model and the NMF method can obtain the Q-matrix for the input of EAKT. ATC 
model is difficult to apply this model to scenarios with thousands of students and long exercise sequences with 
hundreds of problems due to using sampling for training. Such scenarios often generate large-scale datasets and 
complex distribution of KCs in exercises, the training process of the ATC model can be very computationally 
demanding. In the implementation, we use a lightweight NMF method to generate the Q-matrix, while the ATC 
model is embedded in the prediction layer only.

Particularly, the Q-matrix generation process includes three main steps. First, a student’s response data are 
pre-processed to obtain the difficulty matrix 

[
Ei,j

]
M×N

 of the student exercises, which is expressed as follows:

Then, the matrix D is decomposed using the NMF method in Eq. (6).

Eventually, considering that there may be large similarities among the candidate KCs, the obtained matrix UM×K 
need to be merged by a standard K-means clustering operation to construct the final Q-matrix.

EAKT model. Recent studies have demonstrated that the DNN-based knowledge tracing models have 
higher prediction performance than the Bayesian-based models. Particularly, a transformer with a self-attention 
mechanism can significantly enhance psychometric models in characterizing changes and interrelations of com-
plex students’ knowledge states. Therefore, it is the best choice to capture the complexity of knowledge acquisi-
tion and development as defined in Eq. (1) of the ATC framework. In view of that, the EAKT model that embeds 
cognitive framework of the ATC into the transformer structure is proposed. This design combines the benefits 
of the transformer’s supreme predictive powers for the sequential learning process and the ATC’s interpretability. 
The operating mechanism of the EAKT model is presented in Fig. 1, where it can be seen that it includes input 
embedding, knowledge state updating, and response prediction.

The workflow of the EAKT can be described as follows. At each timestamp, the EAKT model receives the 
current interaction information xt = (at , rt) and updates a student’s knowledge state st , and then predicts the 
possibility of answering question at+1 correctly in the next timestamp according to the updated student state. In 
the implementation, it is assumed that N questions are related to M potential knowledge components, which can 
be formalized as an N ∗M Q-matrix. It is worth mentioning that an element Qij is a float value instead of a binary 
value, representing the capability requirement value of a question i to a knowledge component j. A student’s 
knowledge state and the requirements of questions are expressed in the form of a KC vector, whose dimensions 
represent the ability values related to the corresponding KC.

Input embedding with multi-dimensional Q-matrix. At time t, the model receives the input xt = (at , rt) , where 
at is thee N-dimensional one-hot encoding of questions answered at the current moment, and rt is a binary varia-
ble representing the answering response to question at . First, it is needed to process at according to the Q-matrix 
to obtain the KC vector ct that represents the KC requirement of question at . Inspired by the dAFM, this study 
adds a single fully-connected layer to the input stage of the EAKT model instead of taking the Q-matrix as a fixed 
constant. Input layer weight is initialized by the Q-matrix and is constantly adjusted during the model training. 
The KC vector of the question requirement ct is expressed by:

where QM represents the weight matrix of the fully-connected layer, which is initialized by the Q-matrix obtained 
in advance.

(4)p̂ui =
K∑

k=1

wukhik =
(
WHT

)

u,i

(5)Di,j =
{
1− 1

Ti,j
, if Tij ≥ 2, Tij represents the number of attempts by student i on exercise j

0, else

(6)
EM×N ≈ WM×K ×HK×N = ÊM×N

WM×K ≥ 0,HK×N ≥ 0

(7)ct = at · QM
t
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Considering that the answer result has a certain influence on the change in a student’s knowledge state, the 
consistent operation of the DKT and its variants is to extend the one-hot encoding at to a 2N-dimensional vec-
tor as an input to the RNN. However, different requirements of at for KCs can affect the change in a student’s 
knowledge state with each KC. Therefore, instead of using at , this study extends ct to a a 2M-dimensional vector 
dt according to the value of rt as follows:

where ⊕ is the operation that concatenates two vectors, and 0 is a zero vector in the M dimension; dt goes through 
a fully-connected layer to generate et , which represents a neural network input, so that the network can encode 
more information about the interaction at time t.

Updating student knowledge state by attention mechanism. Define D = (d1, d2, . . . , dl) , C = (c1, c2, . . . , cl) , 
D ∈ R

2M×l , and C ∈ R
M×l , where M denotes the knowledge component dimension, and l represents the input 

sequence length. The query, key, and value can be respectively calculated by:

Then, the scaled dot  product21 is used to generate H by Eq. (10), where ht is a row t of H.

The dimension parameter is data-driven and determined by the training goal, which is higher prediction accu-
racy. This means the size of a hidden state ht is not directly related to the students’ knowledge states.

Multi-KC cognitive framework prediction effect. 

where ⊗ represents the element-wise multiplication operation.
Equation (11) specifies a three-step calculation. First, st is subtracted from ct+1 to compute the difference 

between a student’s knowledge state and a KC dimension of questions, which is denoted as a KC difference. The 

(8)dt =
{ [ct ⊕ 0], rt = 1,

[0⊕ ct], rt = 0.

(9)Q = CWQ,K = DWK ,V = DWV

(10)H = Attention (Q,K,V) = softmax

(
QKT

√
d

)
V

(11)
ct+1 = at+1 · QM

t

Ft = (st − ct+1)⊗ ct+1

pt = Pr(Rt = 1|st , ct+1) = φ′(Ft)

+

+

+ ++

τ τ +

+

+

⊖

⊗ ⊗

⨁

⊗ ⊗

⨁ ⨁

⊗

Input Embedding
with Q-Matrix

Updating Students' 
Knowledge State with 
Self Attention 

Prediction With
Cognitive Framework

⨀ ⨀

+

Figure 1.  The overall structure of the EAKT model, including three parts: input embedding with the Q-matrix, 
updating students’ knowledge states using the attention mechanism, and making predictions by the multi-KC 
cognitive framework.
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measurement result of the KC difference directly affects the answering result. Second, ct+1 is set as a weight of 
the KC difference, and each element is multiplied to obtain the synthesis vector Ft . Third, the Sigmoid activation 
function Eq. (12) is modified to φ′ given by Eq. (13) to adapt the structured model. This adjustment introduces 
a constant value m and a coefficient k; m is a hyperparameter, which is usually set empirically to approximately 
6.9 to ensure that the student’s response probability sigmoid ( Ft ) equals one when Ft equals zero. Because at that 
point, a student’s mastery of knowledge state should satisfy the skill requirements of the question and be able to 
give a correct answer for a certainty, k is set for adjusting the slope of the sigmoid function and empirically set 
to 10 for better experimental performance.

The difference between the original sigmoid activation function and the modified activation function is presented 
in Fig. 2. The effectiveness of this adjustment is verified by experiments.

Overall, we provide a pseudo code in algorithm 1 of the EAKT framework to explain the EAKT model better.

(12)φ(Ft) = 1/
(
1+ e−Ft

)

(13)φ′(Ft) = 1/
(
1+ e−m−k∗Ft

)

Figure 2.  Comparison results of the two sigmoid functions.
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Implementation and experimental results
Implementation details. Computing infrastructure and framework setting. We now specify the network 
initializations in EAKT model. The model dimension in attention as 128 and the maximum allowed sequence 
length l as 50. The model is trained with a mini-batch size of five. We use Adam optimizer with a learning rate of 
0.001. The dropout rate is set to 0.1 to reduce overfitting. The L2 weight decay is set to 0.000001. All the model 
parameters unless otherwise specified are normally initialized with 0. All the experiments are conducted on 2 * 
Tesla V100 PCIe 32GB GPUs. Other configuration includes 2 * Intel Xeon Gold 6148 CPU, 128GB DDR4 RAM 
and 1* 1024GB SATA SSD. Software environment is python 3.7.4 and pytorch 1.7.1.

Evaluation methodology. Metrics. The prediction task is considered in a binary classification setting 
i.e., answering an exercise correctly or not. Hence, we compare the prediction performance using the Area Under 
Curve (AUC) metric. The cross entropy loss is also presented in the experimental results to reflect the degree 
of convergence of the model. To verify the interpretability of students’ knowledge state, we used Word Mover’s 
Distance (WMD) and Word Rotator’ Similarity (WRS) to compare the similarity of knowledge state between 
ground-truth and and obtained form different models.

Network training. The objective of training is to minimize the negative log likelihood of the observed sequence 
of student responses under the model. The parameters are learned by minimizing the cross entropy loss between 
φ′(Ft) and rt.

Datasets. Three publicly accessible datasets were used to evaluate the prediction accuracy of the EAKT 
model, and a simulated dataset was used to verify the interpretability of the EAKT model. The EAKT-Q and 
EAKT-P represented variants of the EAKT model, of which the former denoted a model with the Q-matrix 
embedding but without the cognitive framework, and the latter was a model without the Q-matrix embed-
ding but with the cognitive framework. The statistical information of the datasets is given in Table 2. To avoid 
the problem of sparse inputs, the common practice of the majority of the DKT-related studies to initialize the 
number of KCs to the total number of problems in the ASSISTments datasets was adopted. The first dataset 
was ASSISTments2009 [https:// sites. google. com/ site/ assis tment sdata/ home/ 2009- 2010- assis tment- data], which 
was obtained by the ASSISTments online tutoring platform, contained 325k rows of responses of 4151 students 
answering 110 questions. The second dataset was ASSISTment2015 [https:// sites. google. com/ site/ assis tment 
sdata/ datas ets/ 2015- assis tments- skill- build er- data], which was obtained by the same platform, consisted of 

(14)L = −�t

(
rt log

(
pt
)
+ (1− rt) log

(
1− pt

))

https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
https://sites.google.com/site/assistmentsdata/datasets/2015-assistments-skill-builder-data
https://sites.google.com/site/assistmentsdata/datasets/2015-assistments-skill-builder-data
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2014–2015 school years’ student response records, containing 708k rows of non-repeating records. The records 
were generated by 19,917 students answering questions involving 100 questions. The third dataset was ASSIST-
ment2017 [https:// sites. google. com/ view/ assis tment sdata mining/ datas et] containing 942,816 interactions, 1709 
students, and 102 questions. These three real datasets have been widely used to evaluate the performance of the 
DKT and its variants.

To create a simulated dataset, a simulator with the ATC model was developed. It included a group of student 
agents interacting with 30 hypothetical questions and 10 KCs. In the beginning, the simulator randomly gener-
ated the initial state and a question list for each student. Then, at each simulation timestamp, it selected a question 
from the list to be answered for each student. Once a student solved the problem correctly, the simulator removed 
the problem from the student’s question list. Furthermore, the simulator updated each student’s knowledge state 
based on the student’s response result after each simulation iteration by:

• st(k) denotes the ability of a student s for a knowledge component k at time t;
• lk denotes the improvement in students’ ability for a knowledge component k after answering questions at 

time (t − 1);
• β and r are the forgetting parameters;
• �t denotes the time difference between the time t and time (t − 1).

Based on the students’ knowledge state at moment t and the KC requirement of a question i, the probability of 
answering the question correctly was obtained by the ATC model defined by Eq. (1).

Student performance prediction. Experimental results on all datasets are presented in Table 3. The AUC 
and loss values of all models were calculated to evaluate their prediction performances in the experiment. To 
verify the prediction accuracy of student abilities, the training and test datasets of the experiment were defined 
as follows. The first 80% of each student’s answer sequence was set as a training dataset, and the remaining 20% 
of data denoted the test dataset. There are usually two approaches to divide the test dataset, one according to the 
student cut and one according to the sequence cut, because in the experiment we need to verify the prediction 
performance of the model in addition to verify the prediction performance on the knowledge state, and the 
sequence cut according to the sequence can allow the previous sequence of each student to participate in the 
training, so that the prediction of the knowledge state is more accurate. In the experiment of the EAKT model, 
the KC number values of the three real datasets were 30, 10, and 30, and that of the simulated dataset was 10. The 
Q-matrix of the simulated dataset was generated by the ATC model. According to the comparison experiment 
on the simulated dataset, the Q-matrix generated by the ATC model could improve the prediction accuracy of 
the model. Since the ATC model cannot handle large-scale datasets, the Q-matrix of the three real datasets was 
obtained by the NMF.

The AUC and loss of the EAKT were compared with those of the DKT, SAKT, EAKT-Q and EAKT-P models 
on four datasets. For the Assist2009 dataset, the average AUC value achieved by the EAKT model was 84.6%, 
which was higher than those four models. The predictive performances of the five models on the ASSIST2015 
dataset were similar to those on the ASSIST2009 dataset. The AUC values of the three models were 70.2%, 74.1%, 
78.7%,75.0%, and 80.0%. The results indicated that the EAKT model outperformed the DKT model based the 
LSTM structure. The EAKT model also outperformed the SAKT model with the transformer structure on three 

(15)st(k) = max((st−1(k)+ lk) ∗ exp(−β − r ∗�t), 0)

Table 2.  Overview of the experimental datasets.

Dataset Student Question Interaction Average length Length variance Maximum length

ASSIST2009 4,151 110 325,637 78 24293.4 1261

ASSIST2015 19,917 100 708,631 35 2542.6 632

ASSIST2017 1,709 102 942,816 551 175529.1 3057

Simu 20,000 30 1,000,000 50 0 50

Table 3.  Comparison of experimental results. Significant values are in [bold].

Method

DKT SAKT  EAKT-Q  EAKT-P  EAKT

KC.num AUC Loss KC.num AUC Loss KC.num AUC Loss KC.num AUC Loss KC.num AUC Loss

ASSIST2009 30 81.4 0.31 30 79.9 0.32 30 84.0 1.47 30 84.0 1.61 30 84.6 1.48

ASSIST2015 10 70.2 2.39 10 74.1 1.66 10 78.7 5.05 10 75.0 5.35 10 80.0 5.62

ASSIST2017 10 71.8 10.03 10 66.6 10.30 10 69.0 1.57 10 69.5 2.93 10 69.5 1.54

Simu 10 81.7 20.39 10 90.0 5.67 10 90.3 4.72 10 90.0 4.60 10 90.5 4.59

https://sites.google.com/view/assistmentsdatamining/dataset
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datasets. Experimental results showed that embedding cognitive structures in a DNN-based knowledge tracing 
framework could improve prediction performance.

Interpretable knowledge state. The main contribution of the EAKT model is the ability to present every 
student’s knowledge state in an explanatory way, which is vital for implementing adaptive personalized learning. 
The DKT model abstracts knowledge state representation in hidden states of an RNN, resulting in the difficulty 
in interpreting every student’s cognitive skill level and dynamic state changes. The EAKT model constrains the 
transformer by embedding the major elements of the ATC model to reveal the latent knowledge state and the 
changing trend over time from the hidden state of the neural network. To verify that the students’ knowledge 
states obtained by the EAKT model are explicable and accurate, the simulated dataset was used to compare the 
output result of the EAKT with the ground-truth state of each student agent at each timestamp. Two evalua-
tion metrics, namely the word mover’s  distance22 and word rotator’s  distance23 were employed to calculate the 
similarity between the students’ latent state and inferred st from the hidden units of the DKT, SAKT, and EAKT. 
Assume that a student S has a knowledge state sequence of w1,w2, . . . ,wn , then a student S′ has the knowledge 
state sequence w′

1,w
′
2, . . . ,w

′
m . 

1. Word mover’s distance: pi and qj are defined by Eq. (16): 

 The word mover’s distance was defined by: 

2. Word rotator’s distance: pi and qj were calculated by Eq. (18): 

 The word rotator’s similarity was calculated by: 

According to the above definitions, the word mover’s distance indicates a disproportion to the state similarity, 
while the word rotator’s similarity means the opposite. In the experiments, 4,000 students knowledge states form 
test dateset obtained by the EAKT model, EAKT-O model, SAKT model, and DKT model were compared with 
the ground-truth states. The two evaluation metrics were calculated. The EAKT-O model represented the EAKT 
model with the original sigmoid activation function. The sum values of the WMD and WRS were denoted by 
the WMD.T and WRS.T, and their average values were denoted by WMD.A and WRS.A, respectively. They were 
calculated by Eq. (20), where N is the total number of students.

The student’s knowledge state obtained by the EAKT model was the closest to the ground-truth state, having 
the highest average value of WRS.A, which was higher than those of the SAKT, EAKT-O, EAKT-Q, EAKT-P, 
and DKT models. The similarity matrices between the four models and the ground truth for the two distance 
metrics are presented in Fig. 3. The results indicated that the student’s knowledge state obtained by the EAKT 
model outperformed those of the other models. Interestingly, the EAKT-O performed the worst in terms of the 

(16)pi ≡
1

n
, qj ≡ 1

m

(17)

WMD
(
S, S′

)
= min

γi,j≥0

∑

i,j

γi,j

∥∥∥wi − w
′
j

∥∥∥

s.t.
∑

j

γi,j =
1

n
,
∑

i

γi,j =
1

m

(18)

pi =
�wi�
Z

, Z =
n∑

i=1

�wi�

qj =

∥∥∥w′
j

∥∥∥
Z′ , Z′ =

n′∑

j=1

∥∥∥w′
j

∥∥∥

(19)

di,j = 1−
wi · w′

j

�wi� ×
∥∥∥w′

j

∥∥∥

WRS
(
S, S′

)
= 1− min

�i,j≥0

∑

i,j

�i,jdi,j

s.t.
∑

j

�i,j = pi ,
∑

i

�i,j = qj

(20)

WMD.T =
N∑

i=1

WMD
(
Si , Si

′) WMD.A =
N∑

i=1

WMD
(
Si , Si

′)/N

WRS.T =
N∑

i=1

WRS
(
Si , Si

′), WRS.A =
N∑

i=1

WRS
(
Si , Si

′)/N
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two similarity metrics, which confirmed that the optimized activation function was effective in computing the 
student’s knowledge state (Supplementary information).

Conclusions and future work
In this paper, a knowledge tracing model named the EAKT is developed using self-attention mechanism and a 
structured ATC model. The proposed model can trace the knowledge state of students in every timestamp while 
predicting their future performance. Particularly, this paper introduces a multi-dimensional KC vector to rep-
resent students’ knowledge states and a Q-matrix to represent the KC requirements of questions in deep neural 
networks. The experiments on real datasets and simulated datasets verify that the proposed EAKT model can 
obtain an interpretable multi-dimensional sequence of students’ knowledge states on the premise of preserving 
the prediction power of the self-attentive transformer framework. A combination of explanatory and predictive 
power in the EAKT model enables the better design of intelligent tutoring applications. In the future, we plan to 
explore the use of deep learning frameworks to enhance cognitive models, such as using adjustable weights to 
represent Q-matrix and enhance it through introducing exercise texts.

Data availability
The datasets generated and analysed during the current study are available in the EAKT repository, https:// 
github. com/ ranydb/ EAKT.
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